

Cost-Down via Innovation

Quality • Reliability ____

SWM – Anti-Surge Wire Wound MELF Resistors

[*Patent approval] Taiwan patent number: M530462 Japan patent number: 3208923 China patent number: ZL201490001291.X Korean patent number: 20-0486309 United States patent number: US9978483B2

Specifications Per

• IEC 60115-1, 60115-4

Features

- AEC-Q200 Compliant
- SMD enabled structure
- · Excellent in heat dissipation than chip resistor
- Stronger mechanical structure to endure vibration and thermal shock
- Flameproof multi-layer coating equivalent to UL 94 V-0
- Flameproof feature equivalent to overload test UL 1412
- · Enhanced weld spot is reliable against surge
- Products meet RoHS requirements and do not contain substances of very high concern identified by European Chemicals Agency
- · SWM series is applied in high surge applications such as high rush current protection for power capacitor, motor start-up protection, car & motorcycle engine ignition, etc. to absorb harmful surge, so to prevent hazard of circuit damage caused by surge.

DIMENSIONS	

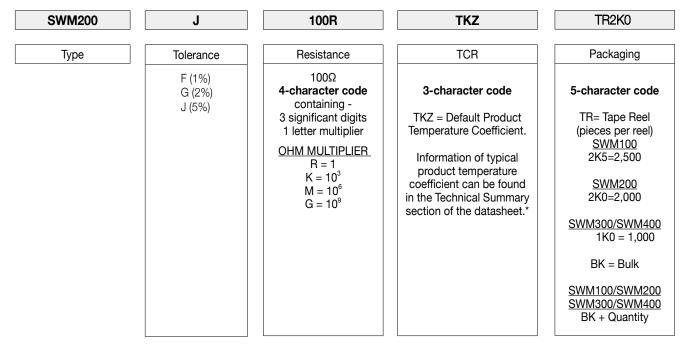
Туре	Body Length (L, mm)	Body Diameter (D, mm)	Soldering Spot (B, mm)
SWM100	8.50 ± 0.5	3.0 ± 0.2	1.3 Min.
SWM200	10.5 ± 0.5	4.0 ± 0.5	1.6 Min.
SWM300	12.6 ± 0.6	4.6 ± 0.5	1.8 Min.
SWM400	14.6 ± 0.6	5.1 ± 0.5	2.0 Min.

GENERAL SPECIFICATIONS

Туре	Power Rating (at 70°C)	Maximum Working Voltage*	Maximum Overload Voltage**	Maximum Permissible Surge Voltage	Minimum Resistance	Maximum Resistance	Resistance Tolerance	Available Resistance Values
SWM100	1W	√PxR	2.5x√PxR	7.5KV	1Ω	1.2KΩ	±1% ~ ±5%	E-96/E-24
SWM200	2W	√PxR	2.5x√PxR	8.5KV	1 Ω	1.2KΩ	±1% ~ ±5%	E-96/E-24
SWM300	ЗW	√PxR	2.5x√PxR	9KV	1 Ω	1.2KΩ	±1% ~ ±5%	E-96/E-24
SWM400	4W	√PxR	2.5x√PxR	10KV	1Ω	1.2KΩ	±1% ~ ±5%	E-96/E-24

* Rated Continuous Maximum Working Voltage (RCWV) should be determined from RCWV = ,/Power Rating x Resistance Values

** Short-time Overload (STOL) test should be determined from STOL=2.5 × RCWV

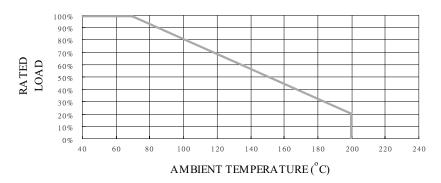

Quality • Reliability

SWM – Anti-Surge Wire Wound MELF Resistors

PART NUMBER

Cost-Down via Innovation

Example:	SWM200J100RTKZTR2K0
----------	---------------------


* For the availabilities of non-default temperature coefficient, please check with us. Reference for TCR letter codes can be found in section (4) of Part Number Construction in the Appendices.

TECHNICAL SPECIFICATIONS

Characteristics	Limits
Temperature Coefficient, PPM / °C	±100, ±200
Operating Temperature Range, °C	-55 ~ +200
Insulation Resistance, $M\Omega$	10 ⁴
Failure Rate in Time, pcs / 10 ⁹ device hours	<0.5

** Please contact us for special request on fusing characteristics.

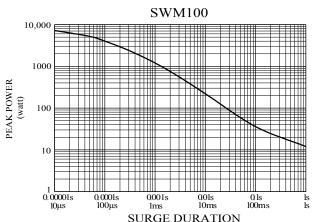
POWER DERATING CURVE

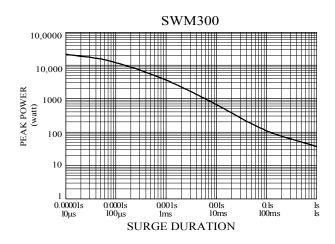
Quality • Reliability ______ Cost-Down via Innovation

SWM – Anti-Surge Wire Wound MELF Resistors

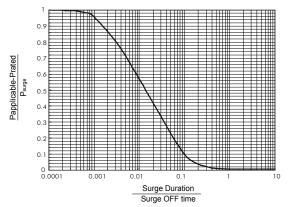
PERFORMANCE SPECIFICATIONS

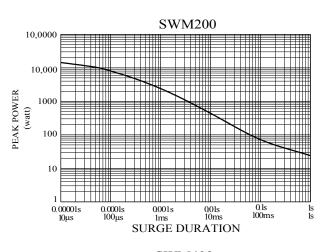
Characteristics	Test Conditions	Limits
Short Time Over Load	IEC 60115-1 4.13 5 seconds 2.5x rated voltage (not over max. overload voltage)	±2%
Load Life In Humidity	IEC 60115-1 4.24 56 days rated load (not over max. working voltage) at (40±2)°C and (93±3)% relative humidity	±5%
Load Life	IEC 60115-1 4.25.1 Rated load (not over max. working voltage) 1,000 hours with 1.5 hours ON, 0.5 hours OFF, at (70±2)°C	±5%
Resistance To Soldering Heat	IEC 60115-1 4.18.2 Dip the resistor into a solder bath measured (260 ± 5)°C and hold it for a 10 ± 1 seconds	±1.5%
Solderability	IEC 60115-1 4.17.2 Solder area covered after $(230\pm3)^{\circ}C/(2\pm0.2)$ seconds with flux applied	95% min. coverage
Vibration	IEC 60115 4.22 Six hours in each parallel and axial direction with a simple harmonic motion having an amplitude of 0.75mm and 10 to 500 Hz.	±0.25%
Thermal Endurance	IEC 60115-1 4.25.3 1000 hours at 200°C without load	±3%
Thermal Shock	IEC 60115-1 4.19 -55°C 30minutes, +155°C 30minutes, 5 cycles	±3%
Surge Test	Proprietary test speci ication FRC-TR-010113 = $\sqrt{(10,000 \text{ PR})}$ DC P is power rating, R is resistance value. Surge spec = 1.2/50 μ s Period = 60 sec Number of surges = 50	±5%




Cost-Down via Innovation

Quality • Reliability


SWM – Anti-Surge Wire Wound MELF Resistors

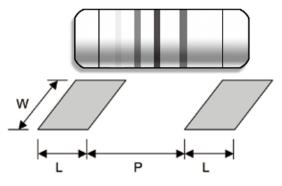

SINGLE SURGE PERFORMANCE



SURGE POWER DERATING CURVE

Notes:

- SINGLE SURGE PERFORMANCE graph is good for NON REPETITIVE applications operating in an ambient temperature of 70°C or less. For temperatures above 70°C, the graph power must be derated further linearly down to zero at 150 °C.
- To determine applicable surge power in continuous-surge applications:
- 1. Identify allowable duration and peak power P_{surge} of single surge;
- 2. Determine ratio of surge duration/surge OFF time in application;
- 3. Calculate Papplicable backwardly according to Y-axis of SURGE POWER DERATING CURVE.

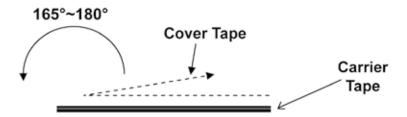


Cost-Down via Innovation

Quality • Reliability

SWM – Anti-Surge Wire Wound MELF Resistors

SUGGESTED PAD LAYOUT



Туре	Soldering Mode*	Pad Length (L, mm, Min.)	Pad Spacing (P, mm)	Pad Width (W, mm, Min.)
SWM100	Reflow (Solder thickness recommended)	3.0	4.9 ± 0.3	3.7
	Wave	3.5	4.8 ± 0.3	4.0
SWM200	Reflow (Solder thickness recommended)	4.0	6.2 ± 0.4	5.0
	Wave	4.5	6.0 ± 0.4	5.0
SWM300	Reflow (Solder thickness recommended)	4.5	8.0 ± 0.4	5.5
	Wave	5.0	7.7 ± 0.4	5.5
SWM400	Reflow (Solder thickness recommended)	5.0	9.3 ± 0.4	6.5
31111400	Wave	5.0	9.0 ± 0.4	6.0

For better heat dissipation / lower heat resistance, increase W & L. *Wave soldering is highly recommended for all SWM types.

COVER TAPE PEELING SPECIFICATION

Recommended peeling force: SWM100, SWM200: 70±10gf SWM300, SWM400: 80±10gf

