

GHXS300A120S7D5

VDC	1200 V
I _F	300 A
T _j ,max	150 °C

1200V SiC Power Module Half Bridge

Features

- · SiC Schottky Diode
- Zero reverse recovery
- Zero forward recovery
- Temperature independent switching behavior
- Positive Temperature coefficient on V_F
- · Low stray inductance
- · High junction temperature operation
- · All parts tested to greater than 1,400V

Semio GHXS300A120S7DS SEMIO SHARE SEMIO SH

Package

Half Bridge

Benefits

- Outstanding performance at high frequency operation
- · Low loss and low EMI noise
- Very rugged and easy mounting
- Direct mounting to heatsink (isolated package)
- · Low junction to case thermal resistance
- RoHS compliant

Part #	Package	Marking
GHXS300A120S7D5	S 7	GHXS300A120S7D5

Applications

- · Switched-mode power supplies
- · Induction heater
- Welding equipment
- · Charging station

Maximum Ratings, at T_i=25 °C, unless otherwise specified (per leg)

Characteristics	Symbol	Conditions	Values	Unit
		T _C =25 °C, T _j =150 °C	463	
Continuous forward current	I _{F*}	T _C =84 °C, T _j =150 °C	300	Α
		T _C =125 °C, T _j =150 °C	166	
Repetitive peak reverse voltage	V_{RRM}	T _j =25 °C	1200	V
Diode dv/dt ruggedness	dv/dt	Turn-on slew rate, repetitive	200	V/ns
Power dissipation	P _{tot**}	T _C =25 °C	1250	W
Operating junction temperature	Tj		-40150	°C
Storage temperature	T _{storage}		-40150	°C

Notes:

^{*} Typical Rth_{JC} used

1200V SiC Power Module

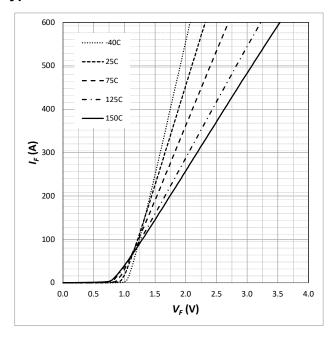
GHXS300A120S7D5

Electrical Characteristics, at T_j=25 °C, unless otherwise specified

Characteristics	Symbol	Conditions		Values		
	Symbol		min.	typ.	max.	Unit
DC blocking voltage	V _{DC}	I _R =600uA, T _j =25 °C	1200	-	-	V
		I _F =300A, T _j =25 °C	-	1.62	1.90	
Diode forward voltage	V _F **	I _F =300A, T _j =125 °C	-	2.01	-	V
		I _F =300A, T _j =150 °C	-	2.15	2.70	1
Reverse current		V _R =1,200V, T _j =25 °C	-	32	600	μΑ
		V _R =1,400V, T _j =25 °C	-	210	-	
	I _R	V _R =1,200V, T _j =125 °C	-	259	-	
		V _R =1,200V, T _j =150 °C	-	475	4500	
Total capacitive charge	Q _C	V _R =800V, T _j =25 °C	-	1837	-	nC
Total capacitance		V _R =1V, f=1 MHz	-	25.9	-	nF
	С	V _R =400V, f=1 MHz	-	1.8	-	
		V _R =800V, f=1 MHz	-	1.3	-	

Thermal and Package Characteristics, at T_j=25 °C, unless otherwise specified

Characteristics	Symbol	Conditions	Values			Unit
Citatacteristics	Symbol	Conditions	min.	typ.	max.	Oille
Thermal resistance, junction-case	R _{thJC}	Per leg	-	0.10	0.12	°C/W
Mounting torque	M _d		-	-	5.0	N-m
Terminal connection torque	M _{dt}		-	-	5.0	N-m
Package weight	W _t		-	250	-	g
Isolation voltage	V _{ISOL}	I _{ISOL} < 1mA, 50/60 Hz, 1 min	2500	-	-	V


NTC Characteristics, at T_i=25 °C, unless otherwise specified

Characteristics	Symbol	ool Conditions	Values			Unit
Characteristics	Syllibol		min.	typ.	max.	Oilit
Rated resistance	R _{NTC}	T _{NTC} = 25°C	-	5.0	-	kΩ
Resistance tolerance	ΔR/R		-5	-	5	%
Beta Value (T ₂ = 50°C)	β _{25/50}		-	3380	-	k
Beta Value (T ₂ = 80°C)	β _{25/80}		-	3440	-	k
Power dissipation	P _{MAX}	T _{NTC} = 25°C	-	-	50	mW

^{**}Diode forward voltage measured at module terminals

GHXS300A120S7D5

Typical Performance

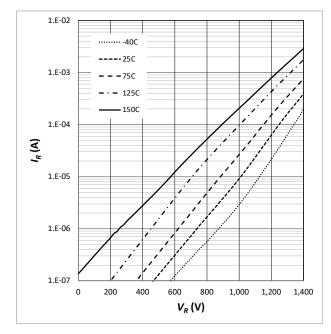


Fig. 1 Forward Characteristics (parameterized on T_i)

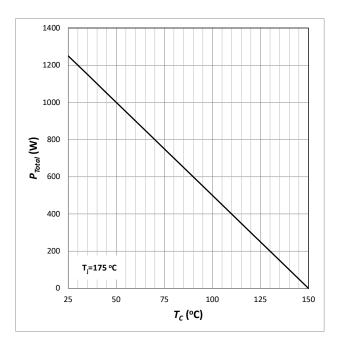


Fig. 3 Power Derating

Fig. 2 Reverse Characteristics (parameterized on T_i)

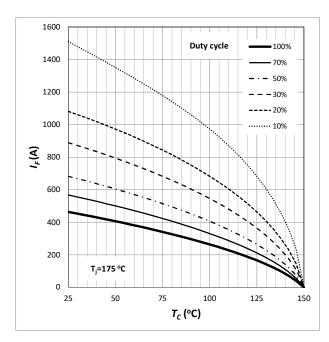
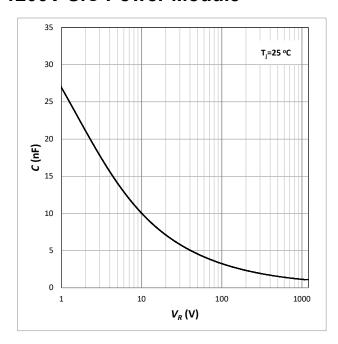



Fig. 4 Current Derating

1200V SiC Power Module

GHXS300A120S7D5

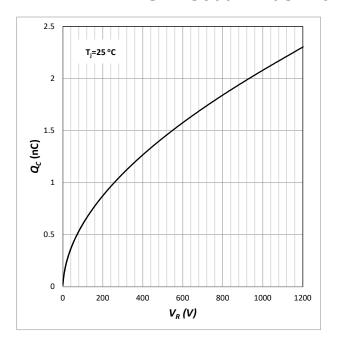


Fig. 5 Capacitance

1.2 T_j=25 °C 1
0.8
0.4
0.4
0.2
0
0 200 400 600 800 1000 1200
V_R(V)

Fig. 6 Capacitive Charge

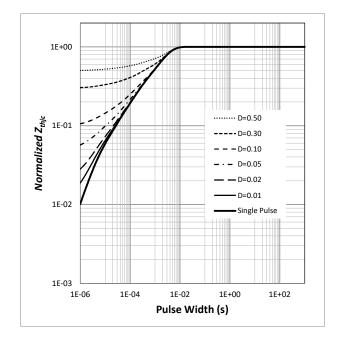


Fig. 7 Typical Capacitance Stored Energy

Fig. 8 Transient Thermal Impedance

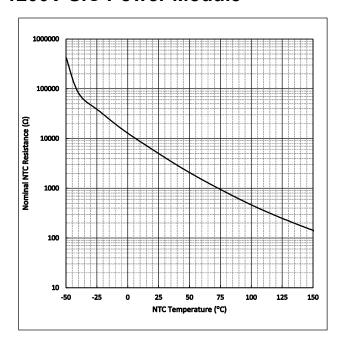
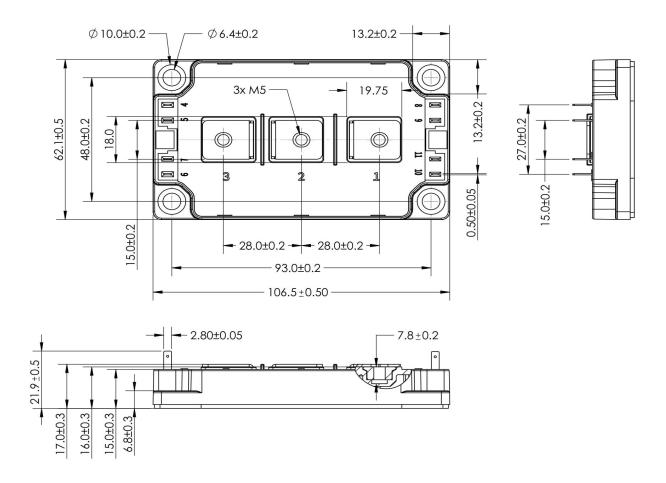



Fig. 9 Nominal NTC Resistance vs. Temperature

Package Dimensions S7

1200V SiC Power Module

GHXS300A120S7D5

Revision History

Date	Revision	Notes
11/19/2021	0.1	Initial release of preliminary datasheet
11/24/2021	0.2	Update thermals
4/11/2022	1.0	Initial production release

<u>Notes</u>

RoHS Compliance

The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/EC (RoHS2), as implemented March, 2013. RoHS Declarations for this product can be obtained from the Product Documentation sections of www.SemiQ.com.

REACh Compliance

REACh substances of high concern (SVHC) information is available for this product. Since the European Chemicals Agency (ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable future, please contact our office at SemiQ Headquarters in Lake Forest, California to insure you get the most up-to-date REACh SVHC Declaration. REACh banned substance information (REACh Article 67) is also available upon request.

SemiQ Inc., reserves the right to make changes to the product specifications and data in this document without notice. SemiQ products are sold pursuant to SemiQ's terms and conditions of sale in place at the time of order acknowledgement.

This product has not been designed or tested for use in, and is not intended for use in, applications implanted into the human body nor in applications in which failure of the product could lead to death, personal injury or property damage, including but not limited to equipment used in the operation of nuclear facilities, life-support machines, cardiac defibrillators or similar emergency medical equipment, aircraft navigation or communication or control systems, or air traffic control.

SemiQ makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SemiQ assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using SemiQ products.