for Automotive Electronics

SPECIFICATIONS

Customer								~9		
Product Name	Product Name Sunlord Part Number			Wire Wound SMD Power Inductor						
Sunlord Part Nu				ASWPA6055S Series						
Customer Part N										
Weight			78	0mg/pcs ⁻	Тур.					
	New Released, Revised] SPEC No.: ASWPA070121					10000				
(ROHS, Halogen-Fre	ee and SVI	HC Comp	oliant	Parts]						
	Approve	d By	Che	cked By	Issued	l By				
				10						
Shenzhe	n Su	nlor	d I	Electr	onic	s Co)., Ltd	•		
Address: Sunlord Indus Tel: 0086-755-29832333		Dafuyua 086-755-8			, Guanlan, il: sunlord@s		-	518110		
[For Customer approval	Only			Date:						
Qualification Status:	Full	Res	tricted					_		
Approved By	Ve	erified By		Re-cheo	cked By	Ch	ecked By			
Comments:								-		
							_			

		ltom	Changed Contents	Change	Drawing	Check	Approva
Rev.	Date	ltem	Changed Contents	Change Reasons	Drawing	GHECK	Approva
01	/	/	/	New release	Yan Liu	Haigen He	Qintian Ho
							C
						\sim	
					~	U	
					\sim		
					0		
				0,			
				ø			
				e			
			j.	0			
				6			
			noil	S			
			onoil	e			
		Š		e			
		Ň					
		ن					
		ن					
	S						
	S						
	S S						
	S. S.						

<content></content>					
No.	Item	Pag			
1	Scope	4			
2	Product Description and Identification (Part Number)	4			
3	Shape and Dimensions	4			
4	Electrical Characteristics	5~7			
5	Test and Measurement Procedures	8			
6	Structure	9			
7	Product Marking	9			
8	Reliability Test	10~1			
9	Packaging and Storage	11~1			
10	Visual inspection standard of product	14			
11	Recommended Soldering Technologies	15			
12	Precautions	16			
	Automotive				

Sunlord Business categories: Level 0 (general confidential) Specifications for Wire Wound SMD Power Inductor Page 4 of 16

1 Scope

1.1 Scope of parts

This specification applies to the ASWPA6055 Series of wire wound SMD power inductor for automotive electronics based on AECQ200D G1.

1.2 Scope of application

Product numbers recorded in this specification are limited to applications with the following modules:

- (1) Multimedia system.
- (2) Prohibit using in Engine Control System.
- 1.3 Operating and storage temperature

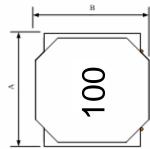
The part temperature (ambient + temp. rise) should not exceed 125°C under worst case operating conditions. Circuit design, component placement, PCB trace size and thickness, airflow and other cooling provisions all affect the part temperature. Part temperature should be verified in the end application.

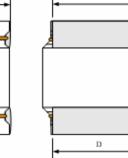
- 1) Operating and storage temperature range (individual chip without packing):-40°C ~+125°C (including self-heating)...
- 2) Storage temperature range (packaging conditions): -10°C~+40°C and RH 70% (Max.)

2 Product Description and Identification (Part Number)

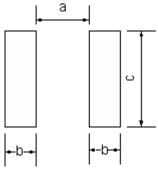
1) Description:

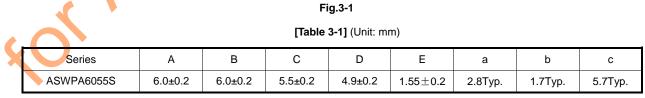
ASWPA6055 Series of Wire wound SMD power inductor.

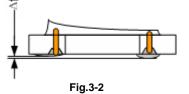

2) Product Identification (Part Number)


A	SWPA	6055	S	1R0	М	Т	Y01
1	2	3	4	5	6		8

①Feature Code	A: for Automotive
2 Product Type	SWPA: Wire wound SMD power inductor
③External Dimensions(L×W×H) [mm]	6055: 6.0×6.0×5.5
④Feature type	S:Standard Type
5Nominal Inductance	1R0=1.0uH,100=10uH,101=100uH
©Inductance Tolerance	M: ±20%,N: ±30%
⑦Packing Code	T: Tape Carrier Package
8 Special Process code	Standard product is blank

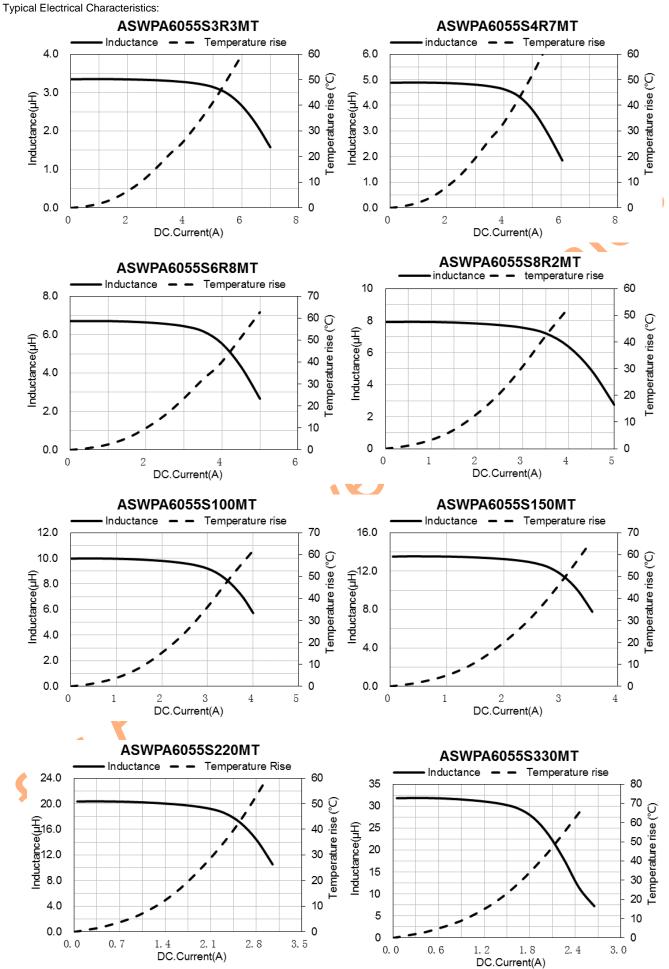

3 Shape and Dimensions


Dimensions and recommended PCB pattern for reflow soldering, please see Fig.3-1, Fig. 3-2 and Table3-1.

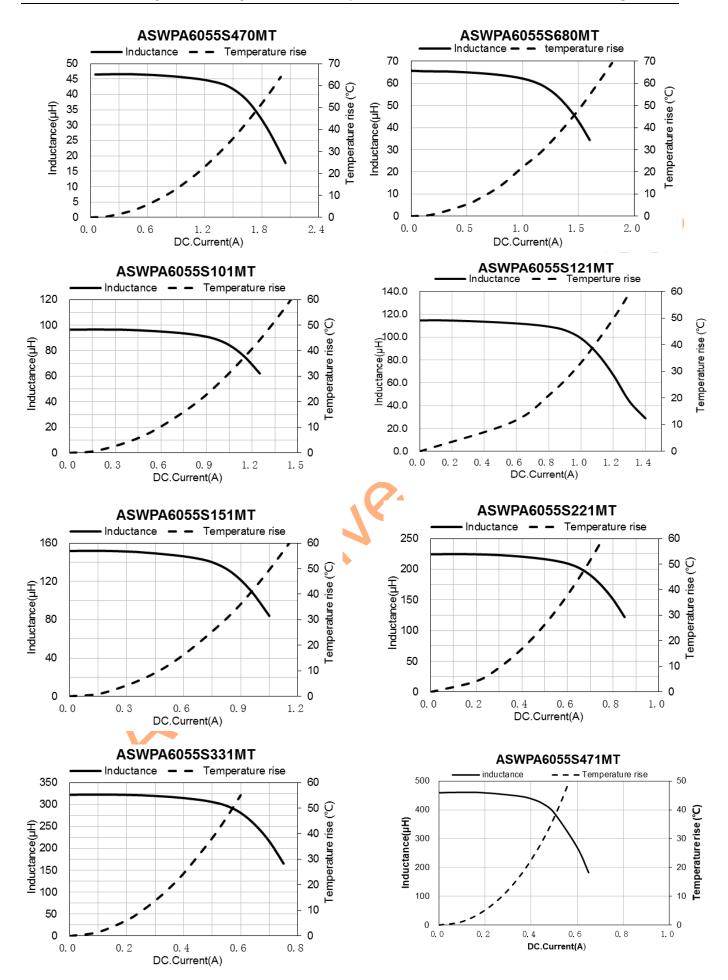


D

Δf: Clearance between terminal and the surface of plate must be 0.1mm max when coil is placed on a flat plate.


Customer		Inductance	Min.	DC Res	istance		ration		Rating rent	
Justomer	Part Number		Self-resonant			Cui	rent	Cur	rent	
P/N		0.1MHz/1V	frequency	Max.	Тур.	Max	Тур.	Max	Тур.	Markin
	Units	μH	MHz	Ω	Ω	А	А	А	А	
	Symbol	L	SRF	DC	R	ls	at	Irr	ns	-
	ASWPA6055S3R3MT	3.3±20%	32	0.026	0.022	5.50	6.00	3.95	4.60	3R3
	ASWPA6055S4R7MT	4.7±20%	24	0.031	0.026	4.5	5.00	3.60	4.25	4R7
	ASWPA6055S6R8MT	6.8±20%	20	0.034	0.028	3.90	4.30	3.50	4.10	6R8
	ASWPA6055S8R2MT	8.2±20%	21	0.049	0.041	3.90	4.30	2.90	3.40	8R2
	ASWPA6055S100MT	10±20%	15	0.054	0.045	3.30	3.70	2.70	3.20	100
	ASWPA6055S150MT	15±20%	12	0.074	0.062	2.80	3.30	2.35	2.75	150
	ASWPA6055S220MT	22±20%	10	0.100	0.083	2.30	2.60	2.00	2.35	220
	ASWPA6055S330MT	33±20%	7.8	0.170	0.142	1.70	2.00	1.55	1.80	330
	ASWPA6055S470MT	47±20%	6.4	0.252	0.210	1.50	1.70	1.25	1.50	470
	ASWPA6055S680MT	68±20%	6.4	0.353	0.294	1.30	1.40	1.00	1.25	680
	ASWPA6055S101MT	100±20%	4.2	0.434	0.362	1.00	1.10	0.95	1.10	101
	ASWPA6055S121MT	120±20%	4.2	0.509	0.424	0.98	1.10	0.80	0.90	121
	ASWPA6055S151MT	150±20%	4.2	0.686	0.572	0.80	0.90	0.75	0.90	151
	ASWPA6055S221MT	220±20%	3.5	1.036	0.863	0.60	0.70	0.60	0.70	221
	ASWPA6055S331MT	330±20%	2.8	1.603	1.336	0.55	0.65	0.50	0.60	331
	ASWPA6055S471MT	470±20%	2.4	2.34	1.80	0.48	0.54	0.45	0.55	471

Note: ※ 1: Rated current: Isat (max.) or Irms (max.), whichever is smaller;


4

※ 2: Saturation Current: Max. Value, DC current at which the inductance drops less than 30% from its value without current;
 Typ. Value, DC current at which the inductance drops approximate 30% from its value without current;

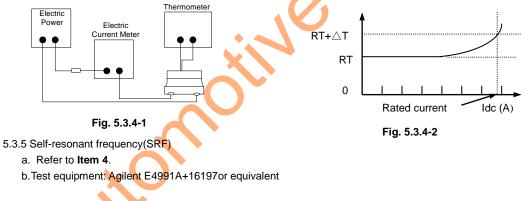
% 3: Irms: DC current that causes the temperature rise (Δ T) from 20°C ambient. For Max. Value, Δ T < 40°C; For *Typ. Value*, Δ T is approximate 40°C.

Sunlord Business categories: Level 0 (general confidential) Specifications for Wire Wound SMD Power Inductor Page 8 of 16

5 Test and Measurement Procedures

5.1 Test Conditions

5.1.1 Unless otherwise specified, the standard atmospheric conditions for measurement/test as:

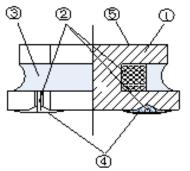

- a. Ambient Temperature: 20±15℃
- b. Relative Humidity: 65±20%
- c. Air Pressure: 86kPa to 106kPa
- 5.1.2 If any doubt on the results, measurements/tests should be made within the following limits:
 - a. Ambient Temperature: 20±2°C
 - b. Relative Humidity: 65±5%
 - c. Air Pressure: 86kPa to 106kPa

5.2 Visual Examination

Inspection Equipment: Visual

5.3 Electrical Test

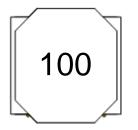
- 5.3.1 Inductance (L)
 - a. Refer to **Item 4**.Test equipment: WK3260B LCR meter or equivalent.
 - b. Test Frequency and Voltage: refers to Item 4.
- 5.3.2 Direct Current Resistance (DCR)
 - a. Refer to Item 4.
 - b. Test equipment: HIOKI 3540 or equivalent.
- 5.3.3 Saturation Current (Isat)
 - a. Refer to Item 4.
 - b. Test equipment: WK3260B LCR meter or equivalent.
- 5.3.4Temperature rise current (Irms)
 - a. Refer to Item 4.
 - b. Test equipment (see Fig. 5.3.4-1, Fig. 5.3.4-2): Electric Power, Electric current meter, Thermometer.
 - c. Measurement method
 - 1. Set test current to be 0 mA.
 - 2. Measure initial temperature of choke surface.
 - 3. Gradually increase current and measure choke temperature for corresponding current.
 - 4. Definition of Temperature rise current: DC current that causes the temperature rise (ΔT) from ambient temperature



Schematic Diagram

\$____F

Structure 6

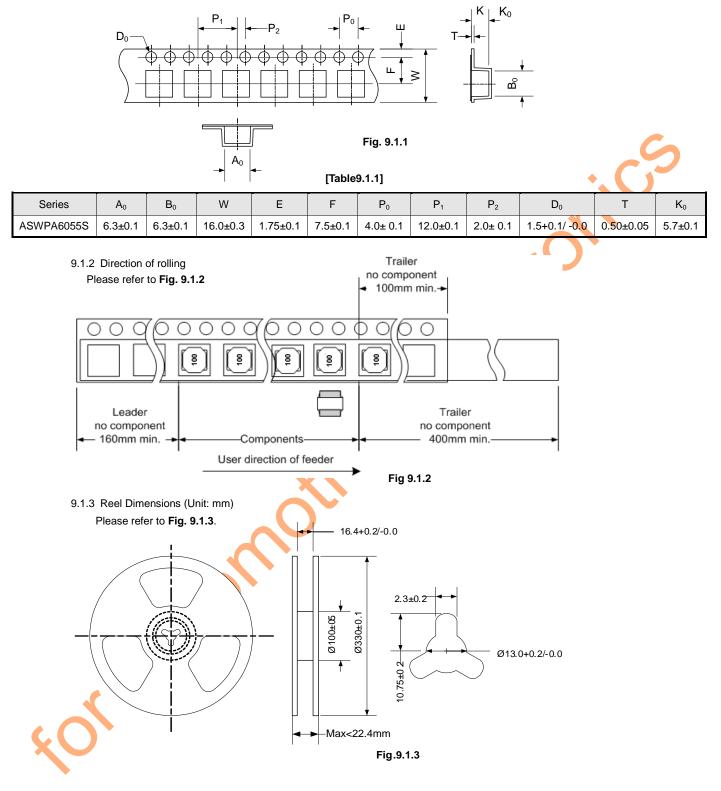

The structure of ASWPA6055 product, please refer to Fig.6-1 and Table 6-1.

		[Table 6-1]
No.	Components	Material
1	Ferrite Core	NiZn Ferrite
2	Wire	Polyurethane system enameled copper wire
3	Magnetic Glue	Epoxy resin and magnetic powder
4	Electrodes	Ag/Ni/Sn+Cu +Sn Alloy
5	Marking	Laser Marking

Fig. 6-1

7 **Product Marking**

		3 Magnetic G	Slue Epoxy resin and magnetic powder
	LK / / /	④ Imagination ④ Electrode	
		5 Marking	
	ð		S
	Fig. 6-1		
7 P	roduct Marking		
	ease refer to Fig. 7-1.		
Tł	ne content of marking plea	ase refers to Item 4 .	
	100		
	Fig. 7-1		
	eliability Test		
No.	Test Item	Test Method(According to AEC-Q20	
		Reflow 2 times, 17.7N(Requirement from	No removal or split of the termination or other defects
No. 1	Test Item Terminal Strength	Reflow 2 times, 17.7N(Requirement from AEC-Q200),X,Ydirect, 60(+1)s.	No removal or split of the termination or other defects shall occur
No. 1 2	Test Item Terminal Strength Resistance to Flexure	Reflow 2 times, 17.7N(Requirement from AEC-Q200),X,Ydirect, 60(+1)s. Reflow 2 times,2mm,60(+5)s.	No removal or split of the termination or other defects shall occur No visible mechanical damage
No. 1	Test Item Terminal Strength	Reflow 2 times, 17.7N(Requirement from AEC-Q200),X,Ydirect, 60(+1)s.	No removal or split of the termination or other defects shall occur No visible mechanical damage
No. 1 2	Test Item Terminal Strength Resistance to Flexure	Reflow 2 times, 17.7N(Requirement from AEC-Q200),X,Ydirect, 60(+1)s. Reflow 2 times,2mm,60(+5)s.	No removal or split of the termination or other defects shall occur No visible mechanical damage
No. 1 2	Test Item Terminal Strength Resistance to Flexure	Reflow 2 times, 17.7N(Requirement from AEC-Q200), X, Ydirect, 60(+1)s. Reflow 2 times, 2mm, 60(+5)s. -40°C/15(+3)min→+25°C/15(+3)min →+125	No removal or split of the termination or other defects shall occur No visible mechanical damage °C Inductance change should be within ±20% of reference
No. 1 2 3	Terminal Strength Resistance to Flexure Temp. Characteristics	Reflow 2 times, 17.7N(Requirement from AEC-Q200), X, Ydirect, 60(+1)s. Reflow 2 times, 2mm, 60(+5)s. -40°C/15(+3)min→+25°C/15(+3)min →+125 /15(+3)min.	No removal or split of the termination or other defects shall occur No visible mechanical damage °C Inductance change should be within ±20% of reference value measuring at 25 °C
No. 1 2 3	Terminal Strength Resistance to Flexure Temp. Characteristics	Reflow 2 times, 17.7N(Requirement from AEC-Q200), X, Ydirect, 60(+1)s. Reflow 2 times, 2mm, 60(+5)s. -40°C/15(+3)min→+25°C/15(+3)min →+125 /15(+3)min. Method 1:	No removal or split of the termination or other defects shall occur No visible mechanical damage °C Inductance change should be within ±20% of reference value measuring at 25 °C
No. 1 2 3	Terminal Strength Resistance to Flexure Temp. Characteristics	Reflow 2 times, 17.7N(Requirement from AEC-Q200), X, Ydirect, 60(+1)s. Reflow 2 times, 2mm, 60(+5)s. -40°C/15(+3)min \rightarrow +25°C/15(+3)min \rightarrow +125 /15(+3)min. Method 1: ①pretreatment:155°C,4h	No removal or split of the termination or other defects shall occur No visible mechanical damage °C Inductance change should be within ±20% of reference value measuring at 25 °C
No. 1 2 3	Terminal Strength Resistance to Flexure Temp. Characteristics	Reflow 2 times, 17.7N(Requirement from AEC-Q200), X, Ydirect, 60(+1)s. Reflow 2 times, 2mm, 60(+5)s. -40°C/15(+3)min→+25°C/15(+3)min →+125°C/15(+3)min. /15(+3)min. Method 1: ①pretreatment:155°C,4h ②235°C,5(-0.5,+0)s.	No removal or split of the termination or other defects shall occur No visible mechanical damage °C Inductance change should be within ±20% of reference value measuring at 25 °C
No. 1 2 3	Terminal Strength Resistance to Flexure Temp. Characteristics	Reflow 2 times, 17.7N(Requirement from AEC-Q200), X, Ydirect, $60(+1)s$. Reflow 2 times, 2mm, $60(+5)s$. - $40^{\circ}C/15(+3)$ min $\rightarrow +25^{\circ}C/15(+3)$ min $\rightarrow +125^{\circ}/15(+3)$ min. Method 1: 1) pretreatment: 155 °C, 4h 2) 235 °C, 5(-0.5, +0)s. 3) Solder: Sn/3.0Ag/0.5Cu.	No removal or split of the termination or other defects shall occur No visible mechanical damage °C Inductance change should be within ±20% of reference value measuring at 25 °C Wetting shall be exceeded 95% coverage
No. 1 2 3	Terminal Strength Resistance to Flexure Temp. Characteristics	Reflow 2 times, 17.7N(Requirement from AEC-Q200), X, Ydirect, 60(+1)s. Reflow 2 times, 2mm, 60(+5)s. -40°C/15(+3)min→+25°C/15(+3)min →+125°C/15(+3)min. Method 1: ①pretreatment:155°C,4h ②235°C,5(-0.5,+0)s. ③Solder:Sn/3.0Ag/0.5Cu. Method 2:	No removal or split of the termination or other defects shall occur No visible mechanical damage °C Inductance change should be within ±20% of reference value measuring at 25 °C Wetting shall be exceeded 95% coverage
No. 1 2 3	Terminal Strength Resistance to Flexure Temp. Characteristics	Reflow 2 times, 17.7N(Requirement from AEC-Q200), X, Ydirect, $60(+1)s$. Reflow 2 times, 2mm, $60(+5)s$. $-40^{\circ}C/15(+3)min \rightarrow +25^{\circ}C/15(+3)min \rightarrow +125^{\circ}/15(+3)min$. Method 1: 1 pretreatment: 155 $^{\circ}C$, 4h 2235 $^{\circ}C$, 5(-0.5, +0)s. 3 Solder: Sn/3.0Ag/0.5Cu. Method 2: 1 Steam aging:8h.	No removal or split of the termination or other defects shall occur No visible mechanical damage °C Inductance change should be within ±20% of reference value measuring at 25 °C Wetting shall be exceeded 95% coverage
No. 1 2 3	Terminal Strength Resistance to Flexure Temp. Characteristics	Reflow 2 times, 17.7N(Requirement from AEC-Q200), X, Ydirect, 60(+1)s. Reflow 2 times, 2mm, 60(+5)s. -40°C/15(+3)min→+25°C/15(+3)min →+125°C/15(+3)min. Method 1: ①pretreatment:155°C,4h ②235°C,5(-0.5,+0)s. ③Solder:Sn/3.0Ag/0.5Cu. Method 2: ①Steam aging:8h. ②235°C,5(-0.5,+0)s.	No removal or split of the termination or other defects shall occur No visible mechanical damage °C Inductance change should be within ±20% of reference value measuring at 25 °C Wetting shall be exceeded 95% coverage
No. 1 2 3	Terminal Strength Resistance to Flexure Temp. Characteristics	Reflow 2 times, 17.7N(Requirement from AEC-Q200), X, Ydirect, 60(+1)s. Reflow 2 times, 2mm, 60(+5)s. -40°C/15(+3)min \rightarrow +25°C/15(+3)min \rightarrow +125 /15(+3)min. Method 1: ①pretreatment: 155°C, 4h ②235°C, 5(-0.5,+0)s. ③Solder: Sn/3.0Ag/0.5Cu. Method 2: ①Steam aging:8h. ②235°C, 5(-0.5,+0)s. ③Solder: Sn/3.0Ag/0.5Cu.	No removal or split of the termination or other defects shall occur No visible mechanical damage °C Inductance change should be within ±20% of reference value measuring at 25°C Wetting shall be exceeded 95% coverage Wetting shall be exceeded 95% coverage
No. 1 2 3	Terminal Strength Resistance to Flexure Temp. Characteristics	Reflow 2 times, 17.7N(Requirement from AEC-Q200), X, Ydirect, $60(+1)s$. Reflow 2 times, 2mm, $60(+5)s$. -40°C/15(+3)min \rightarrow +25°C/15(+3)min \rightarrow +125 /15(+3)min. Method 1: ①pretreatment:155°C, 4h ②235°C, 5(-0.5, +0)s. ③Solder:Sn/3.0Ag/0.5Cu. Method 2: ①Steam aging:8h. ②235°C, 5(-0.5, +0)s. ③Solder:Sn/3.0Ag/0.5Cu. Method 3:	No removal or split of the termination or other defects shall occur No visible mechanical damage °C Inductance change should be within ±20% of reference value measuring at 25 °C Wetting shall be exceeded 95% coverage Wetting shall be exceeded 95% coverage No more than 5% of the solderable termination exhibits
No. 1 2 3	Terminal Strength Resistance to Flexure Temp. Characteristics	Reflow 2 times, 17.7N(Requirement from AEC-Q200),X,Ydirect, 60(+1)s.Reflow 2 times,2mm,60(+5)s40°C/15(+3)min→+25°C/15(+3)min →+125°C/15(+3)min/15(+3)min.Method 1:① pretreatment:155°C,4h②235°C,5(-0.5,+0)s.③Solder:Sn/3.0Ag/0.5Cu.Method 2:① Steam aging:8h.③Solder:Sn/3.0Ag/0.5Cu.Method 3:① Steam aging:8h.	No removal or split of the termination or other defects shall occur No visible mechanical damage °C Inductance change should be within ±20% of reference value measuring at 25 °C Wetting shall be exceeded 95% coverage Wetting shall be exceeded 95% coverage No more than 5% of the solderable termination exhibits exposed underlying, nonwettable base metal or
No. 1 2 3	Terminal Strength Resistance to Flexure Temp. Characteristics	Reflow 2 times, 17.7N(Requirement from AEC-Q200),X,Ydirect, 60(+1)s.Reflow 2 times,2mm,60(+5)s. $+40^{\circ}C/15(+3)min \rightarrow +25^{\circ}C/15(+3)min \rightarrow +125^{\circ}C/15(+3)min.$ Method 1:1) pretreatment: 155 °C,4h $(2235^{\circ}C,5(-0.5,+0)s.$ (3) Solder:Sn/3.0Ag/0.5Cu.Method 2:1) Steam aging:8h. $(2235^{\circ}C,5(-0.5,+0)s.$ (3) Solder:Sn/3.0Ag/0.5Cu.Method 3:1) Steam aging:8h. $(2260^{\circ}C,7(-0.5,+0.5)s.$	No removal or split of the termination or other defects shall occur No visible mechanical damage °C Inductance change should be within ±20% of reference value measuring at 25 °C Wetting shall be exceeded 95% coverage Wetting shall be exceeded 95% coverage No more than 5% of the solderable termination exhibits exposed underlying, nonwettable base metal or metallization layers or portions of the ceramic substrate after exposure to molten solder
No. 1 2 3 4	Test Item Terminal Strength Resistance to Flexure Temp. Characteristics Solderability	Reflow 2 times, 17.7N(Requirement from AEC-Q200),X,Ydirect, 60(+1)s. Reflow 2 times,2mm,60(+5)s. -40°C/15(+3)min→+25°C/15(+3)min →+125°C/15(+3)min /15(+3)min. Method 1: ① pretreatment:155°C,4h ②235°C,5(-0.5,+0)s. ③Solder:Sn/3.0Ag/0.5Cu. Method 2: ① Steam aging:8h. ③2255°C,5(-0.5,+0)s. ③Solder:Sn/3.0Ag/0.5Cu.	No removal or split of the termination or other defects shall occur No visible mechanical damage °C Inductance change should be within ±20% of reference value measuring at 25°C Wetting shall be exceeded 95% coverage Wetting shall be exceeded 95% coverage Wetting shall be exceeded 95% coverage No more than 5% of the solderable termination exhibits exposed underlying, nonwettable base metal or metallization layers or portions of the ceramic substrate after exposure to molten solder (1) No visible mechanical damage
No. 1 2 3 4 5	Test Item Terminal Strength Resistance to Flexure Temp. Characteristics Solderability Resistance to Soldering Heat	Reflow 2 times, 17.7N(Requirement from AEC-Q200),X,Ydirect, 60(+1)s.Reflow 2 times,2mm,60(+5)s40°C/15(+3)min→+25°C/15(+3)min →+125°C/15(+3)min/15(+3)min.Method 1:① pretreatment:155°C,4h②235°C,5(-0.5,+0)s.③Solder:Sn/3.0Ag/0.5Cu.Method 2:① Steam aging:8h.②235°C,5(-0.5,+0)s.③Solder:Sn/3.0Ag/0.5Cu.Method 3:① Steam aging:8h.②260°C,7(-0.5,+0.5)s.③Solder:Sn/3.0Ag/0.5Cu.Reflow:Max. 260°C/10s,3 times.	No removal or split of the termination or other defects shall occur No visible mechanical damage °C Inductance change should be within ±20% of reference value measuring at 25 °C Wetting shall be exceeded 95% coverage Wetting shall be exceeded 95% coverage Wetting shall be exceeded 95% coverage No more than 5% of the solderable termination exhibits exposed underlying, nonwettable base metal or metallization layers or portions of the ceramic substrate after exposure to molten solder (1) No visible mechanical damage (2) Inductance change: Within ±10%
No. 1 2 3 4	Test Item Terminal Strength Resistance to Flexure Temp. Characteristics Solderability	Reflow 2 times, 17.7N(Requirement from AEC-Q200),X,Ydirect, 60(+1)s. Reflow 2 times,2mm,60(+5)s. -40°C/15(+3)min→+25°C/15(+3)min →+125°C/15(+3)min /15(+3)min. Method 1: ① pretreatment:155°C,4h ②235°C,5(-0.5,+0)s. ③Solder:Sn/3.0Ag/0.5Cu. Method 2: ① Steam aging:8h. ③2255°C,5(-0.5,+0)s. ③Solder:Sn/3.0Ag/0.5Cu.	No removal or split of the termination or other defects shall occur No visible mechanical damage °C Inductance change should be within ±20% of reference value measuring at 25 °C Wetting shall be exceeded 95% coverage Wetting shall be exceeded 95% coverage Wetting shall be exceeded 95% coverage No more than 5% of the solderable termination exhibits exposed underlying, nonwettable base metal or metallization layers or portions of the ceramic substrate after exposure to molten solder (1) No visible mechanical damage (2) Inductance change: Within ±10% 3 (1) No visible mechanical damage


7	Mechanical Shock	Half sine shock pulse,100g,6ms,6 shocks in each	(1) No visible mechanical damage
		3 mutually perpendicular directions (total of 18	(2) Inductance change: Within ±10%
		shocks).	(
8	ESD Test	HBM ESD discharge waveform,8KV,each 1 time of	(1) No visible mechanical damage
		+/-polarity.	(2) Inductance change: Within ±10%
9	Thermal Shock	Reflow 2 times, -40/(30±3min),+125/(30±3min),	(1) No visible mechanical damage
		transforming interval:20s(Max.),1000cycles.	(2) Inductance change: Within ±10%
10	Resistance to Low	Reflow 2 times,-40±2°C, 1000(+24) hours	(1) No visible mechanical damage
	Temperature		(2) Inductance change: Within ±10%
11	Resistance to High	Reflow 2 times,125±2°C,1000(+24)hours	(1) No visible mechanical damage
	Temperature		(2) Inductance change: Within ±10%
12	Moisture	Reflow 2 times,	(1) No visible mechanical damage
	Resistance	① 25℃→65℃,90%~100%RH,2.5h	(2) Inductance change: Within ±10%
		② 65℃,90%~100%RH,3h	
		③ 65℃→25℃,80%~100%RH,2.5h	
		④ 25℃→65℃,90%~100%RH,2.5h	
		⑤ 65℃,90%~100%RH,3h	
		⑥ 65℃→25℃,80%~100%RH,2.5h,	
		⑦ 25℃,90%~100%RH,8h,24hours of	
		1cycle(total of 240 hours)	
13	Biased Humidity	Reflow 2 times,85°C, 85%RH,1000h	(1) No visible mechanical damage
			(2) Inductance change: Within ±10%
14	Operational Life	Reflow 2 times,85±2°C,1000(+24)hours, rated	(1) No visible mechanical damage
		current	(2) Inductance change: Within ±10%
15	Flammability	Refer to UL94.	① t1 or t2:≤10s;
			$\textcircled{2}$ t1 plus t2 for the 5 specimens: \leqslant 50s;
			③ t2+t3 for each specimen:≤30s;
			4 No after-flame or after-glow of any specimen up to
			the holding clamp
			5 No cotton indicator ignited by flaming particles or
			drops

Sunlord Business categories: Level 0 (general confidential) Specifications for Wire Wound SMD Power Inductor Page 11 of 16

- 9 Packaging, Storage and Transportation
 - 9.1 Tape and Reel Packaging Dimensions
 - 9.1.1Taping Dimensions (Unit: mm)

Please refer to Fig. 9.1.1 and Table 9.1.1.

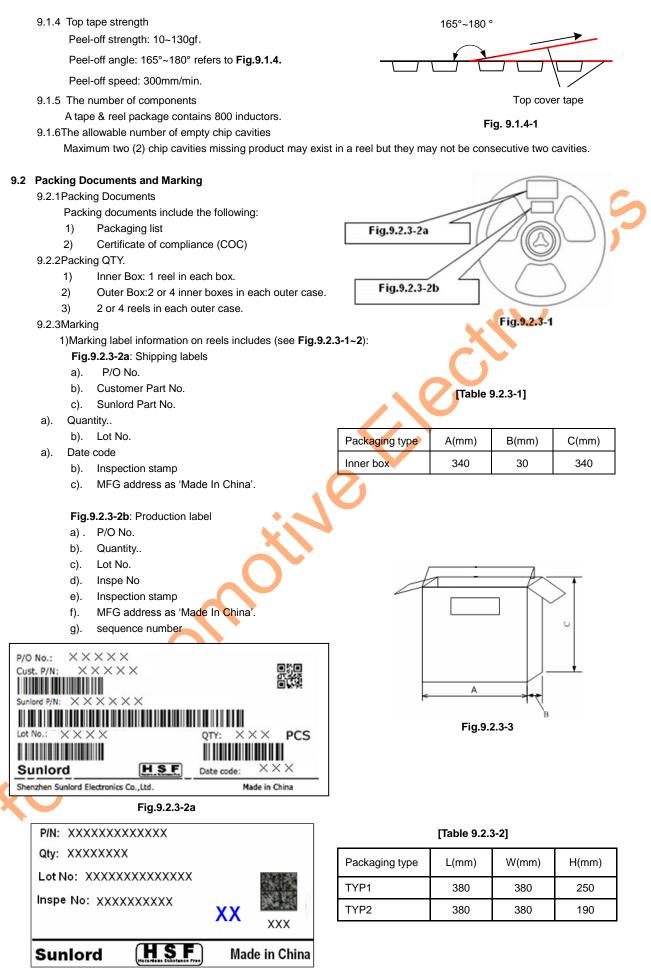
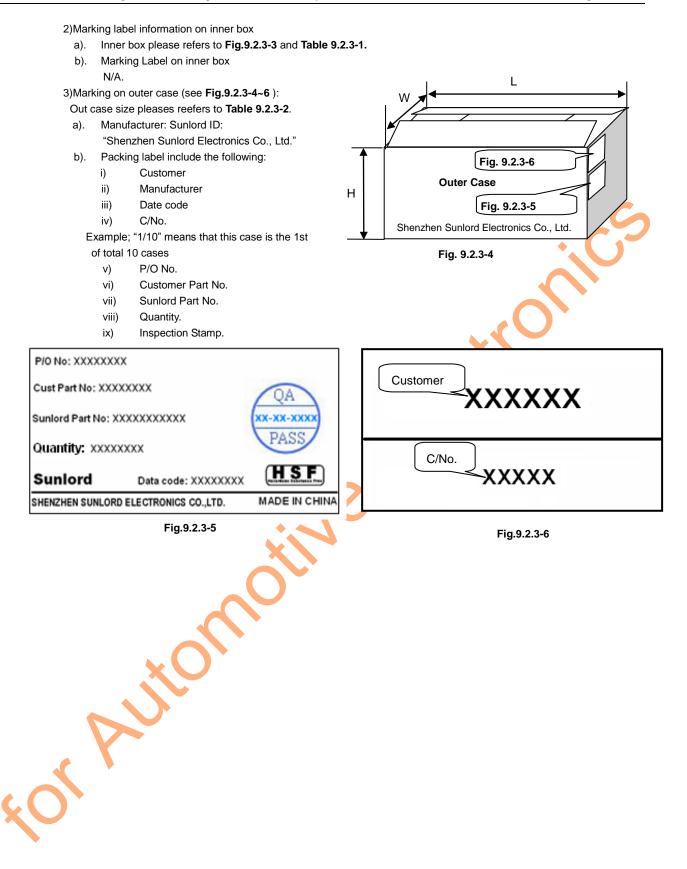



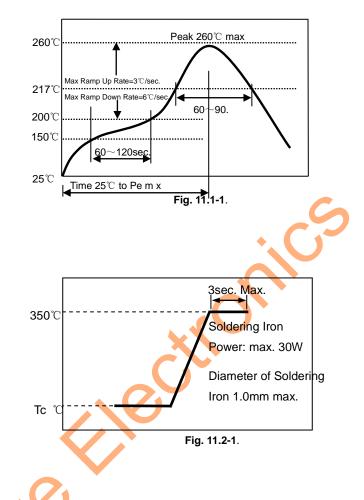
Fig.9.2.3-2b

File No:		Applied to Wire	Wound SMD Power Inductor Series	REV:01
Effectiv	e date:	••		
No.	Defect Item	Graphic	Rejection identification	Acceptance
1	Core defect		The defect length/width (I and <i>w</i>) more than L/6 and W/6, NG.	AQL=0.065
2	Core crack		Visual cracks, NG.	AQL=0.065
3	Starvation		Resin starved length, <i>I</i> , more than L/2,and IF <i>W</i> > 2mm, resin starved width, <i>w</i> , more than W/2, NG. IF <i>W</i> ≤2mm, resin starved width, <i>w</i> , don't control.	AQL=0.065
4	Excessive glue		The length, width or height of product beyond specified value, NG.	AQL=0.065
5	Cold solder		Cold solders / more than1mm, NG.	AQL=0.065
6	Solder icicle		 The height <i>H</i> of product beyond specified value, NG; The clearance Δ<i>f</i> beyond specified value listed in Item 5, NG; 	AQL=0.065
7	Electrode uneven	h	The clearance Δf beyond specified value listed in Item 5 , NG;	AQL=0.065
8	Marking defect		 The content of marking 1) is indistinct, 2) disagrees with current product P/N requirements, NG; Intersection angle by L1 and L2 more than 45°, NG. 	AQL=0.065

10 Visual inspection standard of product

11 Recommended Soldering Technologies

11.1Re-flowing Profile:


- \triangle Preheat condition: 150 ~200°C/60~120sec.
- \triangle Allowed time above 217°C: 60~90sec.
- △ Max temp: 260°C
- \triangle Max time at max temp: 5sec.
- △ Solder paste: Sn/3.0Ag/0.5Cu
- \triangle Allowed Reflow time: 2x max
 - Please refer to Fig. 11.1-1.

[Note: The reflow profile in the above table is only for qualification and is not meant to specify board assembly profiles. Actual board assembly profiles must be based on the customer's specific board design, solder paste and process, and should not exceed the parameters as the Reflow profile shows.]

11.2 Iron Soldering Profile:

- △ Iron soldering power: Max. 30W
- \triangle Pre-heating: 150°C/60sec.
- \triangle Soldering Tip temperature: 350 °C Max.
- △ Soldering time: 3sec. Max.
- △ Solder paste: Sn/3.0Ag/0.5Cu
- △ Max.1 times for iron soldering Please refer to **Fig. 11.2-1**.

[Note: Take care not to apply the tip of the soldering iron to the terminal electrodes.]

12 Precautions

12.1 Surface mounting

- Mounting and soldering condition should be checked beforehand.
- Applicable soldering process to this product is reflow soldering only.
- Recommended conditions for repair by soldering iron:
- Preheat the circuit board with product to repair at 150°C for about 1 minute. Put soldering iron on the land-pattern.
 - Soldering iron's temperature: 350 °C maximum/Duration: 3 seconds maximum/1 time for each terminal.
 - The soldering iron should not directly touch the inductor.
 - Product once removes from the circuit board may not be used again.

12.2 Handing

- Keep the products away from all magnets and magnetic objects.
- Be careful not to subject the products to excessive mechanical shocks.
- Please avoid applying impact to the products after mounted on pc board.
- Avoid ultrasonic cleaning.

12.3 Storage

- To maintain the solderability of terminal electrodes and to keep the packing material in good condition, temperature and humidity in the storage area should be controlled.
- Recommended conditions: -10°C~40°C, 70%RH (Max.)
- Even under ideal storage conditions, solderability of products electrodes may decrease as time passes. For this reason, product should be used with one year from the time of delivery.
- In case of storage over 6 months, solderability shall be checked before actual usage.

12.4 Regarding Regulations

- Any Class- I or Class- II ozone-depleting substance (ODS) listed in the Clean Air Act in US for regulation is not included in the products or applied to the products at any stage of whose manufacturing processes.
- Certain brominated flame retardants (PBBs,PBDEs) are not used at all.
- The products of this specification are not subject to the Export Trade Control Order in China or the Export Administration Regulations in US.

Sunlord Business categories: Level 0 (general confidential) Specifications for Wire Wound SMD Power Inductor Page 16 of 16

12.5 Guarantee

- The guaranteed operating conditions of the products are in accordance with the conditions specified in this specification.
- Please note that Sunlord takes no responsibility for any failure and/or abnormality which is caused by use under other than the aforesaid operating conditions.

12.6 Please make sure to record the lot number on the label when using Sunlord's products in order for good traceability.

Automotive Flectronics