SPECIFICATIONS

Customer				
Product Name		Multi-laye	er Chip Ferrite B	Bead
Sunlord Part N	umber	Н	IFPZ Series	
Customer Part	Number			
[⊠New Release 【This SPEC is tota 【ROHS, Halogen-F	I 11 pages includir			HFPZ0101200000
	Approved By	Checked By	Issued By	

Shenzhen Sunlord Electronics Co., Ltd.

Address: Sunlord Industrial Park, Dafuyuan Industrial Zone, Baoan, Shenzhen, China 518110 Tel: 0086-755-29832333 Fax: 0086-755-82269029 E-Mail: sunlord@sunlordinc.com

(For Customer appro Qualification Status:		Date: estricted	ted		
Approved By	Verified By	Re-checked By	Checked By		
Comments:					

[Version change history]

Rev.	Effective Date	Changed Contents	Change reasons	Approved By
01	/	New release	/	Hai Guo

Caution

All products listed in this specification are developed, designed and intended for use in general electronics equipment. The products are not designed or warranted to meet the requirements of the applications listed below, whose performance and/or quality require especially high reliability, or whose failure, malfunction or trouble might directly cause damage to society, person, or property. Please understand that we are not responsible for any damage or liability caused by use of the products in any of the applications below. Please contact us for more details if you intend to use our products in the following applications.

- 1. Aircraft equipment
- 2. Aerospace equipment
- 3. Undersea equipment
- 4. nuclear control equipment
- 5. military equipment
- 6. Power plant equipment
- 7. Medical equipment
- 8. Transportation equipment (automobiles, trains, ships, etc.)
- 9. Traffic signal equipment
- 10. Disaster prevention / crime prevention equipment
- 11. Data-processing equipment
- 12. Applications of similar complexity or with reliability requirements comparable to the applications listed in the above

8

1. Scope

This specification applies to HFPZ series of multi-layer ferrite chip bead.

Product Description and Identification (Part Number) 2.

Description: 1)

1

3

5

7

R50

1R5

HFPZ

HFPZ series of multi-layer ferrite chip bead.

G, D, E, U

2) Product Identification (Part Number)

Material Code

Rate Current

<u>HFPZ</u> ①	<u>1608</u> ②	<u>0</u> 3	<u>XXX</u> ④	5	<u>0</u> 6	<u> </u>
)	Туре					2

For high frequency noise and

large current

0.5A

1.5A

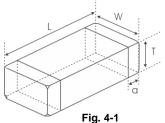
2	External Dimensions (L X W) (mm)			
	1005 [0402]	1.0 X 0.5		
	1608 [0603]	1.6 X 0.8		

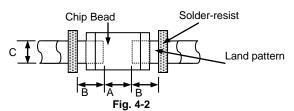
④ Nominal Impedance					
Example	Nominal Value				
600	60Ω				
601	600Ω				

6	Packing	
	Т	Tape Carrier Package

8	Design Code				
		Design	Code	(*	Standard
		product	is blank	()	

Electrical Characteristics 3.


Please refer to Appendix A (Page 9~11).


HSF Products Hazardous Substance Free Products

- Operating and storage temperature range (individual chip without packing): -55° C ~ +125 $^{\circ}$ C. 1)
- 2) Storage temperature range (packaging conditions): -10°C~+40°C and RH 70% (Max.).

Shape and Dimensions 4.

- 1) Dimensions and recommended PCB pattern for reflow soldering: See Fig.4-1, Fig.4-2 and Table 4-1.
- 2) Structure: See Fig. 4-3 and Fig. 4-4.

[Table 4-1]

Unit: mm [inch]

Туре	L	W	Т	а	А	В	С
1005 [0402]	1.0±0.15 [0.039±0.006]	0.5±0.15 [0.020±0.006]	0.5±0.15 [0.020±0.006]	0.25±0.1 [0.010±0.004]	0.45~0.55	0.40~0.50	0.45~0.55
1608 [0603]	1.60±0.15 [0.063±0.006]	0.8±0.15 [0.031±0.006]	0.8±0.15 [0.031±0.006]	0.3±0.2 [0.012±0.008]	0.60~0.80	0.60~0.80	0.60~0.80

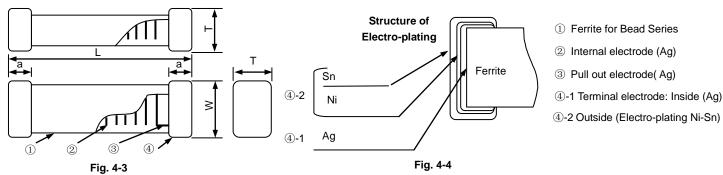


Table 4 01

3) Material information: See Table 4-2.

Code	Part Name	Material Name			
1	Ferrite Body	Ferrite Powder			
2	Inner Coils	Silver Paste			
3	Pull-out Electrode (Ag)	Silver Paste			
④-1	Terminal Electrode: Inside Ag	Termination Silver			
(4)-1	Terminal Electrode: Inside Ag	Composition			
④-2	Electro-Plating: Ni/Sn plating	Plating Chemicals			

5. Test and Measurement Procedures

5.1 Test Conditions

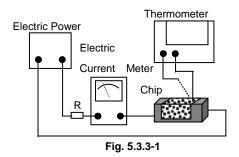
Unless otherwise specified, the standard atmospheric conditions for measurement/test as:

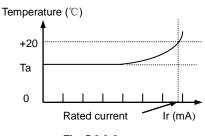
- a. Ambient Temperature: 20±15℃
- b. Relative Humidity: 65±20%
- c. Air Pressure: 86kPa to 106kPa

If any doubt on the results, measurements/tests should be made within the following limits:

- a. Ambient Temperature: 20±2°C
- b. Relative Humidity: 65±5%
- c. Air Pressure: 86kPa to 106kPa

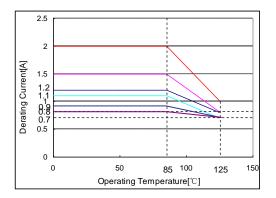
5.2 Visual Examination


a. Inspection Equipment: 20x magnifier


5.3 Electrical Test

- 5.3.1 DC Resistance (DCR)
 - a. Refer to Appendix A.
 - b. Test equipment (Analyzer): High Accuracy Milliohmmeter-HP4338B or equivalent.

5.3.2 Impedance (Z)


- a. Refer to Appendix A.
- Test equipment: High Accuracy RF Impedance /Material Analyzer-E4991A or equivalent. Test fixture: HP16192A
 - Test signal: -20dBm or 50mV
- c. Test frequency refers to Appendix A.
- 5.3.3 Rated Current
 - a. Refer to Appendix A.
 - b. Test equipment (see Fig. 5.3.3-1): Electric Power, Electric current meter, Thermometer.
 - c. Measurement method (see Fig. 5.3.3-1):
 - 1. Set test current to be 0mA.
 - 2. Measure initial temperature of chip surface.
 - 3. Gradually increase voltage and measure chip temperature for corresponding current.
 - Definition of Rated Current (Ir): Ir is direct electric current as chip surface temperature rose just 20°C against chip initial surface temperature(Ta) (see Fig. 5.3.3-2).

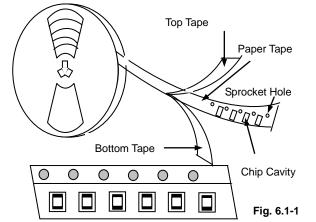
e. In operating temperatures exceeding +85°C, derating of current is necessary for chip ferrite beads for which rated current is 800mA and over. Please apply the derating curve shown in chart according to the operating temperature.

Items	Requirements	Test Methods and Remarks
5.4.1 Terminal Strength	No removal or split of the termination or other defects shall occur. Chip Glass Epoxy Board Fig.5.4.1-1	 Solder the bead to the testing jig (glass epoxy board shown in Fig. 5.4.1-1) using leadfree solder. Then apply a force in the direction of the arrow. 5N force for 1005 and 1608 series. Keep time: 10±1s. Speed: 1.0mm/s.
5.4.2 Resistance to Flexure 5.4.3 Vibration	Ing.3.4.141 No visible mechanical damage. Unit: mm [inch] Unit: mm [inch] Type a b c 1005[0402] 0.4 1.5 0.5 1608[0603] 1.0 3.0 1.2 b \$	 Solder the bead to the test jig (glass epoxy board shown in Fig. 5.4.2-1) Using a leadfree solder. Then apply a force in the direction shown Fig. 5.4.2-2. Flexure: 2mm. Pressurizing Speed: 0.5mm/sec. Keep time: 30 sec. Keep time: 30 sec. Flexure Flexure Flexure Flexure Solder the bead to the testing jig (glass epoxy board shown in Fig. 6.4.3-1) using leadfree solder. The bead shall be subjected to a simple harmonic motion having total amplitude of 1.5mm, the frequency being varied
5.4.4 Dropping	Glass Epoxy Board Fig. 5.4.3-1	 uniformly between the approximate limits of 10 and 55 Hz. The frequency range from 10 to 55 Hz and return to 10 Hz shal be traversed in approximately 1 minute. This motion shall be applied for a period of 2 hours in each 3mutually perpendicular directions (total of 6 hours). Drop chip bead 10 times on a concrete floor from a height of 100 cm
5.4.5 Temperature 5.4.6 Solderability	Impedance change should be within ±20% of initial value measuring at 20°C. ① No visible mechanical damage. ② Wetting shall exceed 95% coverage.	Temperature range: -55°C ~ +125°C Reference temperature: +20°C ① Solder temperature: 240±2°C ② Duration: 3 sec. ③ Solder: Sn/3.0Ag/0.5Cu. ④ Flux: 25% Resin and 75% ethanol in weight.
5.4.7 Resistance to Soldering Heat	 No visible mechanical damage. Wetting shall exceed 95% coverage. Impedance change: within ±20%. 	 Solder temperature: 260±3°C Duration: 5 sec. Solder: Sn/3.0Ag/0.5Cu. Flux: 25% Resin and 75% ethanol in weight. The chip shall be stabilized at normal condition for 1~2 hours before measuring.

Specifications for Multi-layer Chip Ferrite Bead

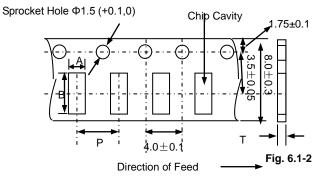
5.4.8 Thermal Shock	 No mechanical damage. ② Impedance change: Within ±20% 125°C 30 min. 30 min. Ambient	 Temperature, Time: (See Fig.5.4.8-1). -55°C for 30±3 min→ 125°C for 30±3min. Transforming interval: 20 sec. Max. Tested cycle: 100 cycles. The chip shall be stabilized at normal condition for 1~2 hours before measuring.
5.4.9 Resistance to Low Temperature	 No visible mechanical damage. Impedance change: within ±20%. 	 Temperature: -55±2°C Duration: 1000⁺²⁴ hours. The chip shall be stabilized at normal condition for 1~2 hours before measuring.
5.4.10 Resistance to High Temperature	 No mechanical damage. Impedance change: within ±20%. 	 Temperature: 125±2°C Duration: 1000⁺²⁴ hours. The chip shall be stabilized at normal condition for 1~2 hours before measuring.
5.4.11 Damp Heat (Steady States)	 No visible mechanical damage. Impedance change: within ±20%. 	 Temperature: 60±2℃. Humidity: 90% to 95% RH. Duration: 1000⁺²⁴ hours. The chip shall be stabilized at normal condition for 1~2 hours before measuring.
5.4.12 Loading Under Damp Heat	 No visible mechanical damage. Impedance change: within ±20%. 	 Temperature: 60±2°C. Humidity: 90% to 95% RH. Duration: 1000⁺²⁴ hours. Applied current: Rated current. The chip shall be stabilized at normal condition for 1~2 hours before measuring.
5.4.13 Loading at High Temperature (Life Test)	 No visible mechanical damage. Impedance change: within ±20%. 	 Temperature: 85±2℃ Duration: 1000⁺²⁴ hours. Applied current: Rated current. The chip shall be stabilized at normal condition for 1~2 hours before measuring.

6. Packaging and Storage


6.1 Packaging

Tape Carrier Packaging:

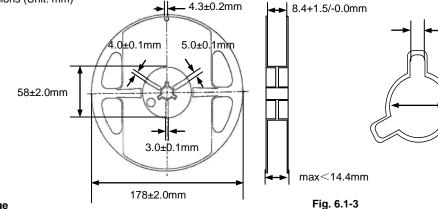
- Packaging code: T
- a. Tape carrier packaging are specified in attached figure Fig. 6.1-1~3
- b. Tape carrier packaging quantity please see the following table:


Туре	1005[0402]	1608[0603]	
T(mm)	0.5±0.15	0.8±0.15	
Таре	Paper Tape	Paper Tape	
Quantity	10K	4K	

(1) Taping Drawings (Unit: mm)

Remark: The sprocket holes are to the right as the tape is pulled toward the user.

(2) Taping Dimensions (Unit: mm)


Paper Tape

Туре	А	A B		T max
1005[0402]	0.65±0.1	1.15±0.1	2.0±0.05	0.8
1608[0603]	1.0±0.2	1.8±0.2	4.0±0.1	1.1

2.45±0.2mm

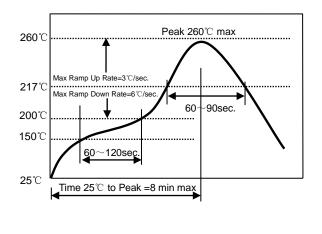
13.5±0.2mm

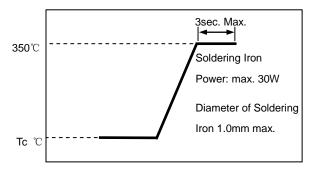
(3) Reel Dimensions (Unit: mm)

6.2 Storage

- The solderability of the external electrode may be deteriorated if packages are stored where they are exposed to high humidity. a. Package must be stored at 40 $^\circ\!\!\mathbb{C}$ or less and 70% RH or less.
- The solderability of the external electrode may be deteriorated if packages are stored where they are exposed to dust of harmful gas b. (e.g. HCl, sulfurous gas of H₂S).
- Packaging material may be deformed if package are stored where they are exposed to heat of direct sunlight. c.
- Solderability specified in Clause 5.4.7 shall be guaranteed for 12 months from the date of delivery on condition that they are stored at d. the environment specified in Clause 3. For those parts, which passed more than12 months shall be checked solder-ability before use.

7. **Recommended Soldering Technologies**

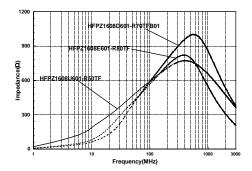

7.1 Re-flowing Profile:


- \triangle Preheat condition: 150 ~200°C/60~120sec.
- Allowed time above 217°C: 60~90sec. \triangle
- \triangle Max temp: 260°C
- \triangle Max time at max temp: 10sec.
- \triangle Solder paste: Sn/3.0Ag/0.5Cu
- Allowed Reflow time: 2x max \wedge

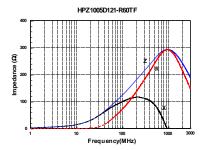
[Note: The reflow profile in the above table is only for qualification and is not meant to specify board assembly profiles. Actual board assembly profiles must be based on the customer's specific board design, solder paste and process, and should not exceed the parameters as the Reflow profile shows.]

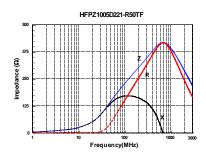
- \wedge Pre-heating: 150 °C / 60sec.
- Soldering Tip temperature: 350°C Max. \triangle
- Soldering time: 3sec Max. \triangle
- \triangle Solder paste: Sn/3.0Ag/0.5Cu
- \triangle Max.1 times for iron soldering

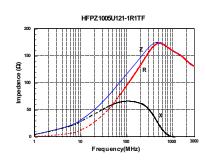
[Note: Take care not to apply the tip of the soldering iron to the terminal electrodes.]

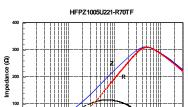

Appendix A: Electrical Characteristics I. HFPZ1005 Series

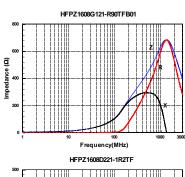
Dort Number	Impedance (Ω)		DCR	lr	Thickness
Part Number	@100MHz	@1GHz (Min.)	(Ω) Max.	(mA) Max.	(mm) [inch]
HFPZ1005D121-R60TF	120±25%	100	0.25	600	
HFPZ1005D221-R50TF	220±25%	300	0.38	500	0.5±0.15
HFPZ1005U121-1R1TF	120±25%	100	0.13	1100	[0.020±0.006]
HFPZ1005U221-R70TF	220±25%	250	0.25	700	

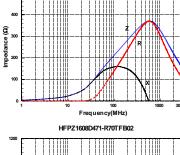

II. HFPZ1608 Series

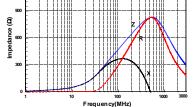

Part Number	Impedance (Ω)		DCR	lr	Thickness
	@100MHz	@1GHz (Min.)	(Ω) Max.	(mA) Max.	(mm) [inch]
HFPZ1608G121-R90TFB01	120±25%	500	0.13	900	
HFPZ1608D121-1R5TF	120±25%	200	0.07	1500	
HFPZ1608D151-1R5TF	150±25%	200	0.07	1500	
HFPZ1608D221-1R2TF	220±25%	300	0.12	1200	
HFPZ1608D331-R90TFB01	330±25%	380	0.15	900	
HFPZ1608D391-R70TF	390±25%	600	0.18	700	
HFPZ1608D471-R70TFB02	470±25%	550	0.22	700	
HFPZ1608D601-R70TFB01	600±25%	1000	0.24	700	
HFPZ1608D102-R60TF	1000±25%	1000	0.35	600	0.8±0.15
HFPZ1608E601-R80TF	600±25%	500	0.25	800	[0.031±0.006]
HFPZ1608E102-R60TF	1000±25%	600	0.35	600	
HFPZ1608E152-R50TF	1500±25%	1000	0.5	500	
HFPZ1608U101-2R0TF	100±25%	100	0.055	2000	
HFPZ1608U121-2R0TF	120±25%	110	0.055	2000	
HFPZ1608U221-R60TF	220±25%	220	0.25	600	
HFPZ1608U471-R50TF	470±25%	400	0.32	500	
HFPZ1608U601-R50TF	600±25%	450	0.35	500	
HFPZ1608U102-R15TF	1000±25%	750	0.9	150	


Impedance Frequency Characteristics

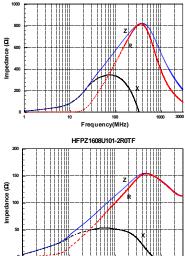

HFPZ1005 Series

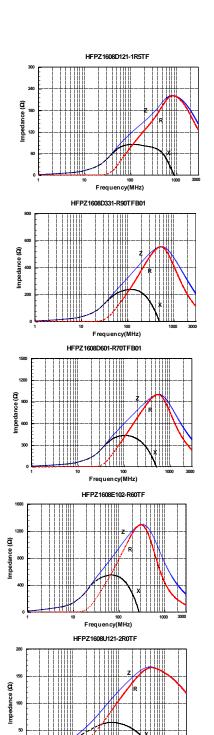


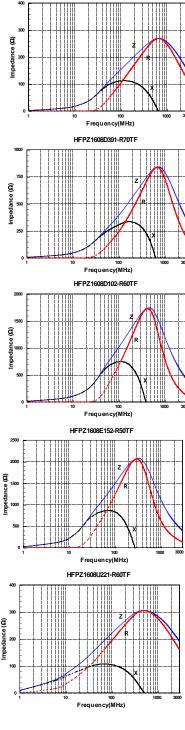

HFPZ1005 Series

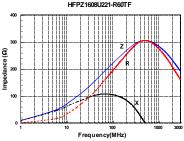


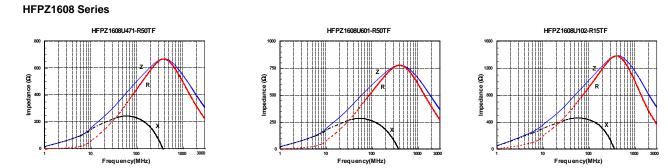
¹⁰⁰ Frequency(MHz)


HFPZ1608 Series




HFPZ1608E601-R80TF


¹⁰⁰ Frequency(MHz)



Frequency(MHz)

HFPZ1608D151-1R5TF

