SPECIFICATIONS

Customer	
Product Name	Wire Wound SMD Power Inductor
Sunlord Part Number	SWPA5045S Series
Customer Part Number	

 $[\square New Released, \square Revised]$

SPEC No .: SWPA0315230000

[This SPEC is total 12 pages.] [ROHS Compliant Parts]

Approved By	Checked By	Issued By

Shenzhen Sunlord Electronics Co., Ltd.

Address: Sunlord Industrial Park, Dafuyuan Industrial Zone, Baoan, Shenzhen, China518110Tel: 0086-755-29832333Fax: 0086-755-82269029E-Mail: sunlord@sunlordinc.com

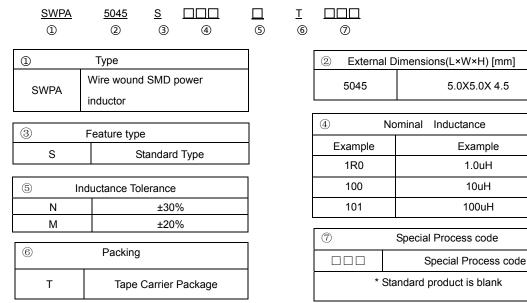
[For Customer approval C Qualification Status:	Dnly】 Full CRestricted	Date:	
Approved By	Verified By	Re-checked By	Checked By
Comments:			

[Version change history]

Rev.	Effective Date	Changed Contents	Change Reasons	Approved By
01	/	New released	/	Guo Ouyang

Caution

All products listed in this specification are developed, designed and intended for use in general electronics equipment. The products are not designed or warranted to meet the requirements of the applications listed below, whose performance and/or quality require especially high reliability, or whose failure, malfunction or trouble might directly cause damage to society, person, or property. Please understand that we are not responsible for any damage or liability caused by use of the products in any of the applications below. Please contact us for more details if you intend to use our products in the following applications.

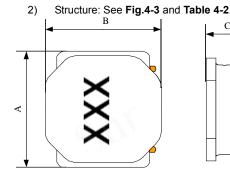

- 1. Aircraft equipment
- 2. Aerospace equipment
- 3. Undersea equipment
- 4. nuclear control equipment
- 5. military equipment
- 6. Power plant equipment
- 7. Medical equipment
- 8. Transportation equipment (automobiles, trains, ships, etc.)
- 9. Traffic signal equipment
- 10. Disaster prevention / crime prevention equipment
- 11. Applications of similar complexity or with reliability requirements comparable to the applications listed in the above

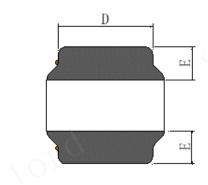
1. Scope

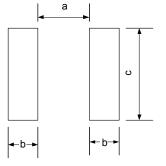
This specification applies to the SWPA5045S Series of wire wound SMD power inductor.

Product Description and Identification (Part Number) 2.

- 1) Description:
 - SWPA5045S series of Wire wound SMD power inductor.
- 2) Product Identification (Part Number)


3 **Electrical Characteristics**


Please refer to Appendix A (Page 12).


- Operating and storage temperature range (individual chip without packing): -40℃ ~+125℃ (Including Self-heating). 1)
- Storage temperature range (packaging conditions): -10 $^\circ\!C$ ~+40 $^\circ\!C$ and RH 70% (Max.). 2)

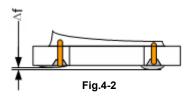
Shape and Dimensions 4

Dimensions and recommended PCB pattern for reflow soldering, please see Fig.4-1 and Table 4-1. 1)

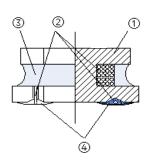
5.0X5.0X 4.5

Example

1.0uH


10uH

100uH


Fig.4-1

[Table 4-1] (Unit: mm)

Series	А	В	С	D	E	а	b	С
SWPA5045S	5.0±0.2	5.0±0.2	4.5Max.	4.0±0.2	1.30±0.2	2.30Тур.	1.40 Тур.	4.20 Тур.

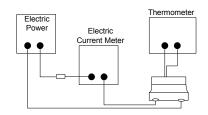
		[Table 4-2]
No.	Components	Material
1	Ferrite Core	Ni-Zn Ferrite
2	Wire	Polyurethane system enameled copper wire
3	Magnetic Glue	Epoxy resin and magnetic powder
4	Electrodes	Sn Alloy

Fig.4-3

5 Test and Measurement Procedures

5.1 Test Conditions

5.1.1 Unless otherwise specified, the standard atmospheric conditions for measurement/test as:


- a. Ambient Temperature: 20±15°C
- b. Relative Humidity: 65±20%
- c. Air Pressure: 86kPa to 106kPa
- 5.1.2 If any doubt on the results, measurements/tests should be made within the following limits:
 - a. Ambient Temperature: 20±2°C
 - b. Relative Humidity: 65±5%
 - c. Air Pressure: 86kPa to 106kPa

5.2 Visual Examination

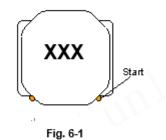
Inspection Equipment: 10X microscope.

5.3 Electrical Test

- 5.3.1 Inductance (L)
 - a. Refer to Appendix A. Test equipment: WK3260B LCR meter or equivalent.
 - b. Test Frequency and Voltage: refers to Appendix A.
- 5.3.2 Direct Current Resistance (DCR)
 - a. Refer to Appendix A.
 - b. Test equipment: HIOKI 3540 or equivalent.
- 5.3.3Saturation Current (Isat)
 - a. Refer to Appendix A
 - b. Test equipment: WK3260B LCR meter or equivalent.
- 5.3.4 Temperature rise current (Irms)
 - a. Refer to Appendix A.
 - b. Test equipment (see Fig. 5.3.4-1, Fig. 5.3.4-2): Electric Power, Electric current meter, Thermometer.
 - c. Measurement method
 - 1. Set test current to be 0 mA.
 - 2. Measure initial temperature of choke surface.
 - 3. Gradually increase current and measure choke temperature for corresponding current.
 - 4. Definition of Temperature rise current: DC current that causes the temperature rise (\triangle T) from ambient temperature


5.3.5Self-resonant frequency(SRF)

- a. Refer to Appendix A.
- b.Test equipment: Agilent E4991A+16197or equivalent

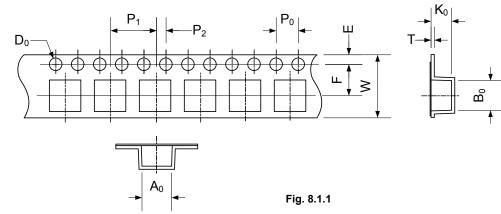

6 Product Marking

Please refer to Fig. 6-1.

The content of marking please refers to Appendix A.

7 Reliability Test

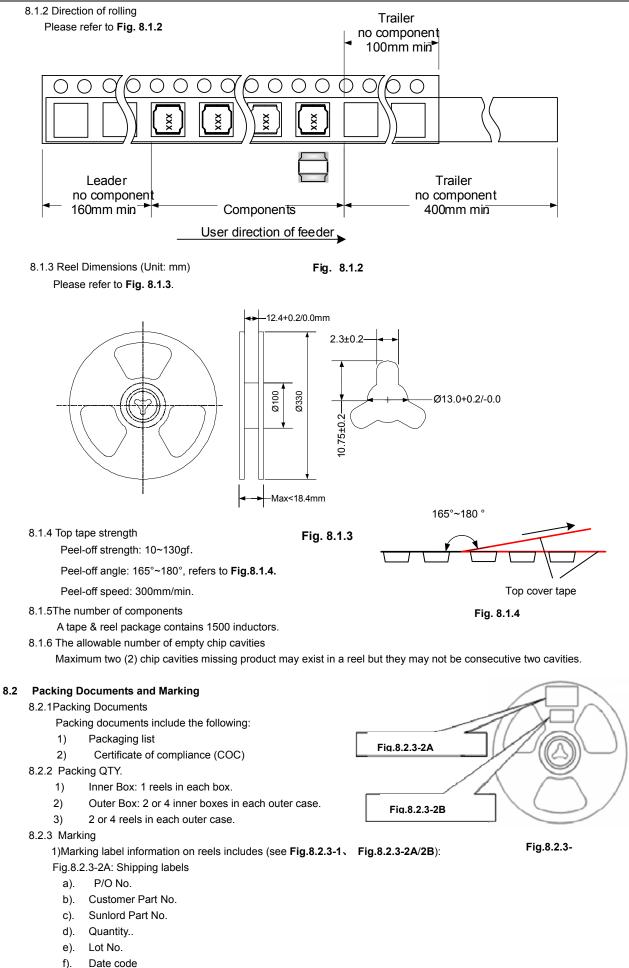
Items	Requirements		Test Methods and Remarks
7.1 Terminal Strength	No removal or split of the termination or other defects shall occur.	1 2 3	Solder the inductor to the testing jig (glass epoxy board shown in Fig.7.1-1) using eutectic solder. Then apply a force in the direction of the arrow. 10N force. Keep time: 5s
7.2 Resistance to Flexure	No visible mechanical damage.	1 2 3 4 5 6	Solder the chip to the test jig (glass epoxy board) using eutectic solder. Then apply a force in the direction shown as Fig.7.2-1 . Flexure: 2mm Pressurizing Speed: 0.5mm/sec Keep time: 30±1s Test board size: 100X40X1.0 Land dimension: Please see Fig. 4-1
7.3 Vibration	 No visible mechanical damage. Inductance change: Within ±10% 	1 2 3	Solder the chip to the testing jig (glass epoxy board shown as the following figure) using eutectic solder. The chip shall be subjected to a simple harmonic motion having total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55 Hz. The frequency range from 10 to 55 Hz and return to 10 Hz shall be traversed in approximately 1 minute. This motion shall be applied for a period of 2 hours in each 3 mutually perpendicular directions (total of 6 hours).
7.4 Temperature coefficient	Inductance change: Within ±20%	1) 2)	Temperature: -40 $^\circ \rm C$ ~+125 $^\circ \rm C$ With a reference value of +20 $^\circ \rm C$, change rate shall be calculated
7.5 Solderability	90% or more of electrode area shall be coated by new solder.	1 2 3 4 5 6	The test samples shall be dipped in flux, and then immersed in molten solder. Solder temperature: 245±5°C Duration: 5±1 sec. Solder: Sn/3.0Ag/0.5Cu Flux: 25% resin and 75% ethanol in weight Immersion depth: all sides of mounting terminal shall be immersed
7.6 Resistance to Soldering Heat	 No visible mechanical damage. Inductance change: Within ±10% 	① ② ③ ④ 2600 2177 2000 1500 25%	Max Ramp Up Rate=3℃/sec. °C Max Ramp Down Rate=6℃/sec °C °C °C 60~90sec. °C 60~120sec

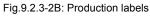

7.7	① No visible mechanical damage.	① Temperature and time: -40±3°C for 30±3 min \rightarrow 125°C
Thermal Shock	Inductance change: Within ±10% 125°C 30 min. 30 min. Ambient	 for 30±3min, please refer to Fig. 7.7-1. 2 Transforming interval: Max. 20 sec 3 Tested cycle: 100 cycles 4 The chip shall be stabilized at normal condition for 1~2 hours before measuring
7.8 Resistance to Low Temperature	 No visible mechanical damage Inductance change: Within ±10% 	 Temperature: -40±3℃ Duration: 1000^{±24} hours The chip shall be stabilized at normal condition for 1~2 hours before measuring
7.9 Resistance to High Temperature	 No mechanical damage. Inductance change: Within ±10% 	 Temperature: 125±2°C Duration: 1000^{±24} hours The chip shall be stabilized at normal condition for 1~2 hours before measuring.
7.10 Damp Heat	 No mechanical damage. Inductance change: Within ±10% 	 Temperature: 60±2°C Humidity: 90% to 95%RH Duration: 1000^{±24} hours The chip shall be stabilized at normal condition for 1~2 hours before measuring
7.11 Loading Under Damp Heat	 No mechanical damage. Inductance change: Within ±10% 	 Temperature: 60±2°C Humidity: 90% to 95% RH Applied current: Rated current Duration:1000^{±24} hours The chip shall be stabilized at normal condition for 1~2 hours before measuring
7.12 Loading at High Temperature	 No mechanical damage. Inductance change: Within ±10% 	 Temperature: 85±2℃ Applied current: Rated current Duration: 1000^{±24} hours The chip shall be stabilized at normal condition for 1~2 hours before measuring

8 Packaging, Storage and Transportation

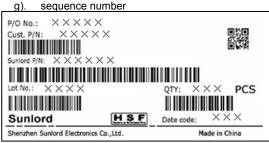
8.1 Tape and Reel Packaging Dimensions

8.1.1Taping Dimensions (Unit: mm)


Please refer to Fig. 8.1.1 and Table 8.1.1.


[Table8.1.1]

Series	A ₀	B ₀	W	E	F	P ₀	P ₁	P ₂	Do	т	K ₀
SWPA5045S	5.3±0.1	5.3±0.1	12.0±0.3	1.75±0.1	5.5±0.1	4.0±0.1	8.0±0.1	2.0±0.1	1.5+0.1/-0.0	0.4±0.03	4.7±0.1


Sunlord business categories: Level 0 (general confidential) Specifications for Wire Wound SMD Power Inductor Page 8 of 12 Rev.03

- f).
- Inspection stamp g).
- h). MFG address as 'Made In China'

- a). P/O No.
- b). Quantity..
- c). Lot No.
- d). Inspe No
- e). Inspection stamp
- f). MFG address as 'Made In China'.

Qty: XXXXXXXX

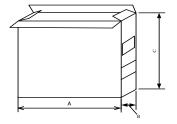
P/N: XXXXXXXXXXXXXX

Lot No: XXXXXXXXXXXXXXXX

2)Marking label information on inner box

a). Inner box please refers to Fig.8.2.3-3 and Table 8.2.3-1

Fig.9.2.3-2A

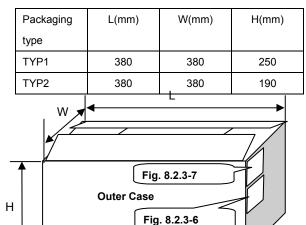

- b). Marking Label on inner box
 - N/A

3)Marking on outer case (see Fig.8.2.3-5~7):

- Out case size pleases reefers to Table 8.2.3-2.
- a). Manufacturer: Sunlord ID:
 - "Shenzhen Sunlord Electronics Co., Ltd."
- b). Packing label include the following:
 - i) Customer
 - ii) Manufacturer
 - iii) Date code
 - iv) C/No.

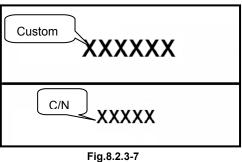
Example; "1/10" means that this case is the 1st one Ofitotal 10 cases

- iv) P/O No.
- ivi) Customer Part No.
- ivi) Sunlord Part No.
- iviji) Quantity.
- ix) Inspection Stamp.
- iv)
- iv)


XXX

Made in China

Fiq.8.2.3-3


[Table 8.2.3-1]

Packaging type	A(mm)	B(mm)	C(mm)
Inner box	340	30	340
	[Table 8.2	.3-2]	

Shenzhen Sunlord Electronics Co., Ltd.

SHENZHEN SUNLOR	D ELECTRONICS CO., LTD.	MADE IN CHINA
Sunlord	Data code: XXXXXXXX	HSF
Quantity: xxxx	xxxx	PASS
Sunlord Part No: >	****	xx-xx-xxxx
Cust Part No: XXX	XXXXX	QA
P/O No: XXXXXX	x	

Rev.03
1/64.03

9 Visua	al inspection stand	ard of product		<u>Rev.03</u>	
File N		Applied to Wire Wound	REV:01		
Effec No.	tive date: Defect	Graphic	Acceptance		
NO.	Item	Graphic	Rejection identification	Acceptance	
1	Core defect		The defect length/width (I or <i>w</i>) more than L/6 or W/6, NG.	AQL=0.65	
2	Core crack		Visual cracks, NG.	AQL=0.65	
3	Starvation		 Resin starved length, <i>I</i>, more than L/2, NG. IF W>2mm, resin starved width, <i>w</i>, more than W/2, NG. IF W≤2mm, resin starved width, <i>w</i>, don't control. 	AQL=0.65	
4	Excessive glue		The length, width or height of product beyond specified value, NG.	AQL=0.65	
5	Cold solder		cold solders / more than 1 mm, NG.	AQL=0.65	
6	Solder icicle		 The height <i>H</i> of product beyond specified value, NG; The clearance Δf beyond specified value listed in Item 4, NG; 	AQL=0.65	
7	Electrode uneven	h	The clearance <i>Δf</i> beyond specified value listed in Item 4, NG;	AQL=0.65	
8	Marking defect		 The content of marking 1) is indistinct, 2) disagrees with current product P/N requirements, NG; Intersection angle by L1 and L2 more than 45°, NG. 	AQL=0.65	

10 Recommended Soldering Technologies

- 10.1 Re-flowing Profile:
- \triangle Preheat condition: 150 ~200 °C/60~120sec.
- \triangle Allowed time above 217°C: 60~90sec.
- △ Max temp: 260°C
- △ Allowed Reflow time: 2x max Please refer to **Fig. 10.1-1**.

[Note: The reflow profile in the above table is only for qualification and is not meant to specify board assembly profiles. Actual board assembly profiles must be based on the customer's specific board design, solder paste and process, and should not exceed the parameters as the Reflow profile shows.]

10.2 Iron Soldering Profile

- \bigtriangleup $\,$ Iron soldering power: Max. 30W
- \triangle Pre-heating: 150°C/60sec.
- \triangle Soldering Tip temperature: 350 °C Max.
- \triangle Soldering time: 3sec. Max.
- △ Solder paste: Sn/3.0Ag/0.5Cu
- △ Max.1 times for iron soldering Please refer to **Fig. 10.2-1**.

[Note: Take care not to apply the tip of the soldering iron to the terminal electrodes.

11 Precautions

11.1 Surface mounting

- Mounting and soldering condition should be checked beforehand.
- Applicable soldering process to this product is reflow soldering only.
- Recommended conditions for repair by soldering iron:
 - Preheat the circuit board with product to repair at 150 $^{\rm C}$ for about 1 minute.
 - Put soldering iron on the land-pattern.
 - Soldering iron's temperature: 350 °C maximum/Duration: 3 seconds maximum/1 time for each terminal.
 - The soldering iron should not directly touch the inductor.
 - Product once removes from the circuit board may not be used again.

11.2 Handing

- Keep the products away from all magnets and magnetic objects.
- Be careful not to subject the products to excessive mechanical shocks.
- Please avoid applying impact to the products after mounted on pc board.
- Avoid ultrasonic cleaning.
- It is recommended to use automatic plate division by equipment instead of manual plate splitting to avoid affecting the peeling strength of the electrode.
- Hard tweezers cannot be used to grip the product, it is recommended to use a nozzle pen to prevent damage to the insulation of the product..

11.3 Storage

- To maintain the solderability of terminal electrodes and to keep the packing material in good condition, temperature and humidity in the storage area should be controlled.
- Recommended conditions: -10℃~40℃, 70%RH (Max.)
- Even under ideal storage conditions, solderability of products electrodes may decrease as time passes. For this reason, product should be used with one year from the time of delivery.
- In case of storage over 12 months, solderability shall be checked before actual usage.

11.4 Regarding Regulations

- Any Class- I or Class- II ozone-depleting substance (ODS) listed in the Clean Air Act in US for regulation is not included in the products or applied to the products at any stage of whose manufacturing processes.
- Certain brominated flame retardants (PBBs, PBDEs) are not used at all.
- The products of this specification are not subject to the Export Trade Control Order in China or the Export Administration Regulations in US.

11.5 Guarantee

- The guaranteed operating conditions of the products are in accordance with the conditions specified in this specification.
- Please note that Sunlord takes no responsibility for any failure and/or abnormality which is caused by use under other than the aforesaid operating conditions.

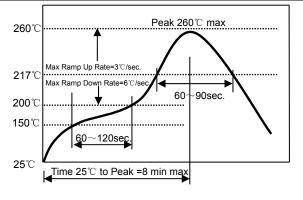
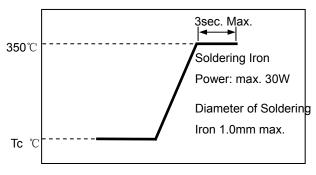



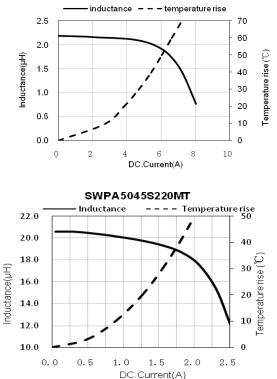
Fig. 10.1-1

Sunlord business categories: Level 0 (general confidential) Specifications for Wire Wound SMD Power Inductor Page 12 of 12 Rev.03

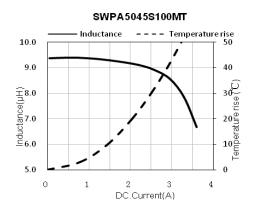
Customer P/N	Part Number	Inductance Min. Self-resonant		DC Resistance		Saturation Current		Heat Rating Current		
		100KHz,1V	frequency	Max.	Тур.	Max.	Тур.	Max.		Marking
	Units	μH	MHz	Ω	Ω	А	А	А	А	
	Symbol	L	SRF	DCR		Isat		Irms		-
	SWPA5045S2R2MT	2.2±20%	50	0.029	0.022	6.40	7.20	4.70	5.40	2R2
	SWPA5045S100MT	10±20%	17	0.079	0.061	3.20	3.70	2.50	2.90	100
	SWPA5045S220MT	22±20%	10	0.163	0.125	2.00	2.35	1.55	1.80	220

Note: **1 : Rated current: Isat (max.) or Irms(max.), whichever is smaller;

%2 : Saturation Current: Max.Value, DC current at which the inductance drops less than 30% from its value without current;


Typ. Value, DC current at which the inductance drops 30% from its value without current;

%3 : Irms: DC current that causes the temperature rise ($\Delta T)$ from 20°C ambient.


For Max. Value, $\Delta T \le 40^{\circ}$ C; for Typ. Value, ΔT is approximate 40° C.

The part temperature (ambient + temp. rise) should not exceed 125 °C under worst case operating conditions. Circuit design, component placement, PCB trace size and thickness, airflow and other cooling provisions all affect the part temperature. Part temperature should be verified in the end application.

Typical Electrical Characteristics:

