SPECIFICATIONS

Customer

Product Name

Sunlord Part Number

Wire Wound SMD Power Inductor WPN3012HS Series

Customer Part Number

 $[\square New Released, \square Revised]$

SPEC No.: WPN0105200000

[This SPEC is total 12 pages.]

[ROHS, Halogen-Free and SVHC Compliant Parts]

Approved By	Checked By	Issued By

Shenzhen Sunlord Electronics Co., Ltd.

Address: Sunlord Industrial Park, Dafuyuan Industrial Zone, Baoan, Shenzhen, China518110Tel: 0086-755-29832333Fax: 0086-755-82269029E-Mail: sunlord@sunlordinc.com

[For Customer approx	val Only】		Date:	
Qualification Status:	🗌 Full	Restricted	Rejected	
Approved By		Verified By	Re-checked By	Checked By
Comments:				

【Version change history】

Rev.	Effective Date	Changed Contents	Change Reasons	Approved By
01	/	New released	/	Qintian Hou

Categories: general confidential

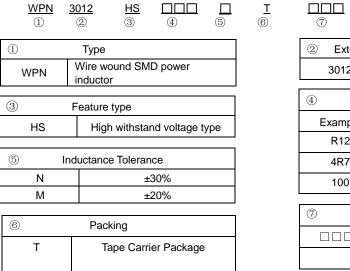
Specifications for Wire Wound SMD Power Inductor Page 3 of 12

Caution

All products listed in this specification are developed, designed and intended for use in general electronics equipment. The products are not designed or warranted to meet the requirements of the applications listed below, whose performance and/or quality require especially high reliability, or whose failure, malfunction or trouble might directly cause damage to society, person, or property. Please understand that we are not responsible for any damage or liability caused by use of the products in any of the applications below. Please contact us for more details if you intend to use our products in the following applications.

- 1. Aircraft equipment
- 2. Aerospace equipment
- 3. Undersea equipment
- 4. nuclear control equipment
- 5. military equipment
- 6. Power plant equipment
- 7. Medical equipment
- 8. Transportation equipment (automobiles, trains, ships, etc.)
- 9. Traffic signal equipment
- 10. Disaster prevention / crime prevention equipment
- 11. Data-processing equipment
- 12. Applications of similar complexity or with reliability requirements comparable to the applications listed in the above

1 Scope


This specification applies to the WPN3012HS Series of wire wound SMD power inductor.

2 Product Description and Identification (Part Number)

1) Description:

WPN3012HS Series of Wire wound SMD power inductor.

2) Product Identification (Part Number)

2 External Dimensions(L×W×H) [mm]						
3012	3.0X3.0X 1.2					
	·					
4	Nominal Inductance					
Example	Example					
R12	0.12uH					
4R7	4.7uH					
100	10uH					
\bigcirc	Special Process code					
	Special Process code					
* 5	Standard product is blank					

3 Shape and Dimensions

Dimensions and recommended PCB pattern for reflow soldering, please see Fig.3-1, Fig. 3-2 and Table 3-1.

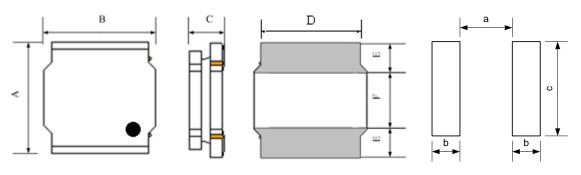
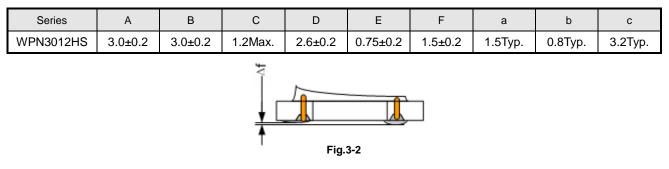



Fig.3-1

[Table 3-1] (Unit: mm)

Δf: Clearance between terminal and the surface of plate must be 0.1mm max when coil is placed on a flat plate.

4 Electrical Characteristics

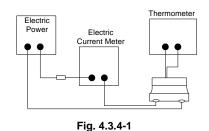
Please refer to Item 6.

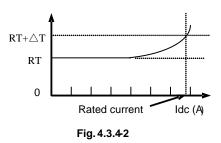
- 1) Operating and storage temperature range (individual chip without packing): -40°C ~ +125°C (Including Self-heating)
- 2) Storage temperature range (packaging conditions): -10°C ~+40°C and RH 70% (Max.)

5 Test and Measurement Procedures

5.1 Test Conditions

- 5.1.1 Unless otherwise specified, the standard atmospheric conditions for measurement/test as:
 - a. Ambient Temperature: 20±15℃
 - b. Relative Humidity: 65±20%
 - c. Air Pressure: 86kPa to 106kPa


- 5.1.2 If any doubt on the results, measurements/tests should be made within the following limits:
 - a. Ambient Temperature: 20±2°C
 - b. Relative Humidity: 65±5%
 - c. Air Pressure: 86kPa to 106kPa


5.2 Visual Examination

Inspection Equipment: 10X microscope

5.3 Electrical Test

- 5.3.1 Inductance (L)
 - a. Refer to Item 6. Test equipment: WK3260B LCR meter or equivalent.
 - b. Test Frequency and Voltage: refers to Item 6.
- 5.3.2 Direct Current Resistance (DCR)
 - a. Refer to Item 6.
 - b. Test equipment: HIOKI 3540 or equivalent.
- 5.3.3 Saturation Current (Isat)
 - a. Refer to Item 6.
 - b. Test equipment:WK3260B LCR meter or equivalent.
- 5.3.4 Temperature rise current (Irms)
 - a. Refer to Item 6.
 - b. Test equipment (see Fig. 4.3.4-1, Fig. 4.3.4-2): Electric Power, Electric current meter, Thermometer.
 - c. Measurement method
 - 1. Set test current to be 0 mA.
 - 2. Measure initial temperature of choke surface.
 - 3. Gradually increase current and measure choke temperature for corresponding current.
 - 4. Definition of Temperature rise current: DC current that causes the temperature rise (Δ T) from ambient temperature.

5.3.5Self-resonant frequency(SRF)

- a. Refer to Item 6.
- b.Test equipment: Agilent E4991A+16197or equivalent

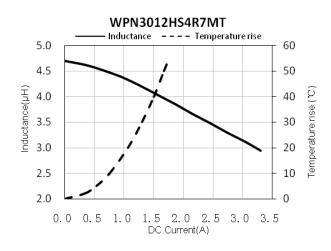
6 Electrical Characteristics

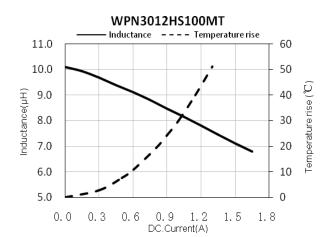
Custom	Part Number	Inductance	Min. Self-res	DC Resistance		Saturation Current		Heat Rating Current		
er P/N		@1MHz, 1V	onant frequenc y	Max.	Тур.	Max.	Тур.	Max.	Тур.	Marki ng
	Units	μH	MHz	Ω	Ω	A	А	А	A	
	Symbol	L	SRF	DCR		Isat		Irms		-
	WPN3012HS4R7MT	4.7±20%	21	0.235	0.196	2.00	2.50	1.30	1.50	•
	WPN3012HS100MT	10±20%	12	0.474	0.395	1.35	1.65	1.00	1.15	•
	WPN3012HS100MTY01	10±20%	17	0.415	0.360	1.90	2.15	1.35	1.55	•
	WPN3012HS150MT	15±20%	13	0.635	0.550	1.55	1.75	1.10	1.25	

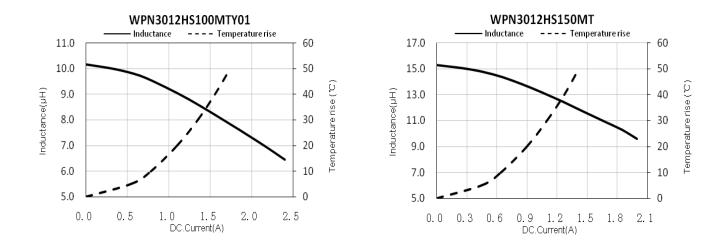
Note: 1 : Rated current: Isat (max.)or Irms(max.), whichever is smaller;

*2 : Saturation Current: Max. Value, DC current at which the inductance drops less than 30% from its value without current;

Typ. Value, DC current at which the inductance drops 30% from its value without current;


 $\otimes 3$: Irms: DC current that causes the temperature rise (ΔT) from 20°C ambient.


For Max. Value, $\Delta T \le 40^{\circ}$ C; for Typ. Value, ΔT is approximate 40° C.


The part temperature (ambient + temp. rise) should not exceed 125 °C under worst case operating conditions. Circuit design, component placement, PCB trace size and thickness, airflow and other cooling provisions all affect the part temperature. Part temperature should be verified in the end application.

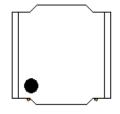
%4 : Absolute maximum voltage: DC40V

Typical Electrical Characteristics:

7 Structure

The structure of WPN3012HS Series product, please refer to Fig.7-1 and Table 7-1.

Fig.7-1


[Table 7-1]

No.	Components	Material
1	Core	Soft magnetic Metal
2	Wire	Polyurethane system enameled copper wire
3	Magnetic Glue	Epoxy resin and magnetic powder
4	Electrodes	substrate+Top Electrodes

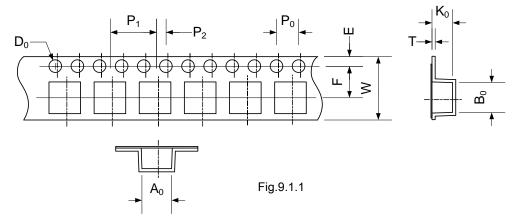
8 Product Marking

Please refer to Fig. 8-1.

The content of marking please refers to Item 6.

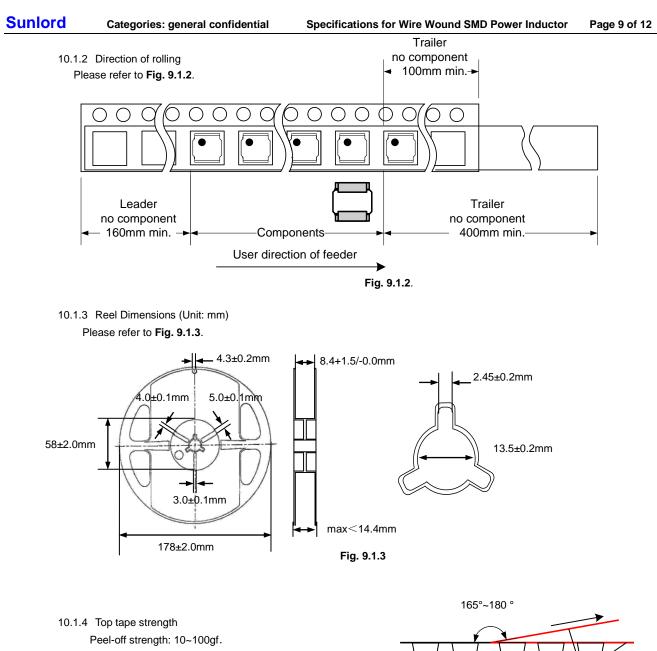
9

Items	Requirements	Test Methods and Remarks
9.1 Terminal Strength	No removal or split of the termination or other defects shall occur.	 Solder the inductor to the testing jig (glass epoxy board shown in Fig.8.1-1) using eutectic solder. Then apply a force in the direction of the arrow. 10N force. Keep time: 5s
9.2 Resistance to Flexure	No visible mechanical damage.	 Solder the chip to the test jig (glass epoxy board) using eutectic solder. Then apply a force in the direction shown as Fig.8.2-1. Flexure: 2mm Pressurizing Speed: 0.5mm/sec Keep time: 30±1s Test board size: 100X40X1.0 Land dimension: Please see Fig. 3-1
9.3 Vibration	 No visible mechanical damage. Inductance change: Within ±10% 	 Solder the chip to the testing jig (glass epoxy board shown as the following figure) using eutectic solder. The chip shall be subjected to a simple harmonic motion having total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55 Hz. The frequency range from 10 to 55 Hz and return to 10 Hz shall be traversed in approximately 1 minute. This motion shall be applied for a period of 2 hours in each 3 mutually perpendicular directions (total of 6 hours).
9.4 Temperature coefficient	Inductance change: Within ±20%	 Temperature: -40°C~+125°C With a reference value of +20°C, change rate shall be calculated
9.5 Solderability	90% or more of electrode area shall be coated by new solder.	 The test samples shall be dipped in flux, and then immersed in molten solder. Solder temperature: 245±5°C Duration: 5±1 sec. Solder: Sn/3.0Ag/0.5Cu Flux: 25% resin and 75% ethanol in weight Immersion depth: all sides of mounting terminal shall be immersed
9.6 Resistance to Soldering Heat	 No visible mechanical damage. Inductance change: Within ±10% 	 Re-flowing Profile: Please refer to Fig. 8.6-1. Test board thickness: 1.0mm Test board material: glass epoxy resin The chip shall be stabilized at normal condition for 1~2 hours before measuring 260°C 260°C Peak 260°C max Max Ramp Up Rate=3°C/sec. 200°C 150°C 60° 120 sec. 5°C Time 25°C to Peak =8 min max Fig. 8.6-1

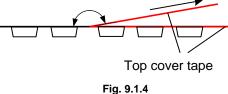

9.7	① No visible mechanical damage.	(1) Temperature and time: $-40\pm3^{\circ}$ for 30 ± 3 min $\rightarrow 125^{\circ}$
Thermal Shock	 Inductance change: Within ±10% 	for 30±3min, please refer to Fig. 8.7-1 .
		2 Transforming interval: Max. 20 sec
	30 min. 30 min.	③ Tested cycle: 100 cycles
	Ambient	④ The chip shall be stabilized at normal condition for
		1~2 hours before measuring
	-40°C 30 min.	
	20sec. (max.)	
	Fig.8.7-1	
9.8	① No visible mechanical damage	① Temperature: -40±3°C
Resistance to Low	② Inductance change: Within ±10%	② Duration: 1000 ^{±24} hours
Temperature		③ The chip shall be stabilized at normal condition for
		1~2 hours before measuring
9.9	① No mechanical damage.	① Temperature: 125±2℃
Resistance to High	② Inductance change: Within ±10%	② Duration: 1000 ^{±24} hours
Temperature		③ The chip shall be stabilized at normal condition for
		1~2 hours before measuring.
9.10	① No mechanical damage.	① Temperature: 60±2°C
Damp Heat	② Inductance change: Within ±10%	2 Humidity: 90% to 95%RH
		③ Duration: 1000 ^{±24} hours
		④ The chip shall be stabilized at normal condition for
		1~2 hours before measuring
9.11	① No mechanical damage.	① Temperature: 60±2℃
Loading Under	② Inductance change: Within ±10%	② Humidity: 90% to 95% RH
Damp Heat		③ Applied current: Rated current
		5 The chip shall be stabilized at normal condition for
		1~2 hours before measuring
9.12	① No mechanical damage.	① Temperature: 85±2℃
Loading at High	② Inductance change: Within ±10%	② Applied current: Rated current
Temperature		③ Duration: 1000 ^{±24} hours
		④ The chip shall be stabilized at normal condition for
		1~2 hours before measuring

10 Packaging, Storage and Transportation

10.1 Tape and Reel Packaging Dimensions


10.1.1 Taping Dimensions (Unit: mm)

Please refer to Fig. 9.1.1 and Table 9.1.1.



[Table9.1.1]

Series	A ₀	B ₀	W	E	F	P ₀	P ₁	P ₂	D ₀	Т	K ₀
WPN3012HS	3.3±0.1	3.3±0.1	8.0±0.3	1.75±0.1	3.5±0.05	4.0±0.1	4.0±0.1	2.0±0.1	1.5+0.1/-0.0	0.25±0.03	1.4±0.1

- Peel-off angle: 165°~180°, refers to Fig.9.1.4.
- Peel-off speed: 300mm/min.
- 10.1.5 The number of components
 - A tape & reel package contains 2000 inductors.
- 10.1.6 The allowable number of empty chip cavities

inductors.

Packing QTY.

Fig.9.2.3-2A

Fig.9.2.3-2B

Maximum two (2) chip cavities missing product may exist in a reel but they may not be consecutive two cavities.

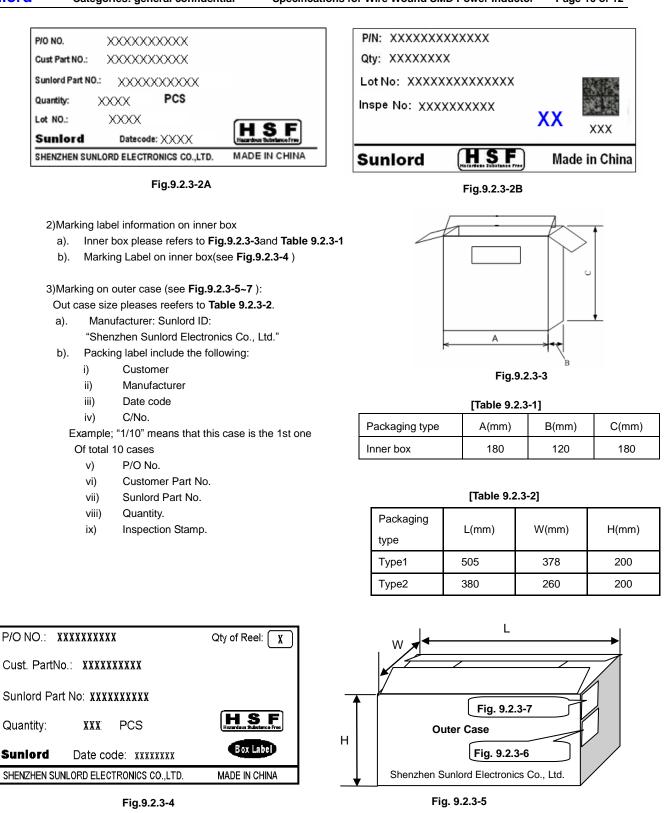
10.2 Packing Documents and Marking

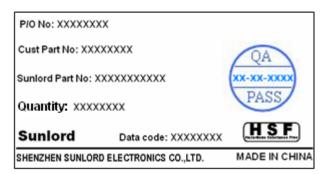
10.2.1 Packing Documents

- Packing documents include the following:
- Packaging list
- 2) Certificate of compliance (COC)
- 10.2.2
 - 1) Inner Box: 10 reels in each box.
 - 2) Outer Box: 4 or 8 inner boxes in each outer case.
 - 3) 40 or 80 reels in each outer case.

Marking

1)Marking label information on reels includes (see Fig.9.2.3-1, Fig.9.2.3-2A/2B):


- a). Sunlord P/N.
- b). Quantity per reel
- c). Lot number


10.2.3

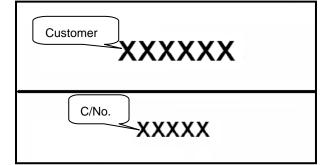
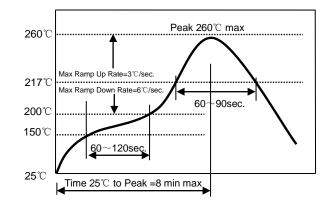
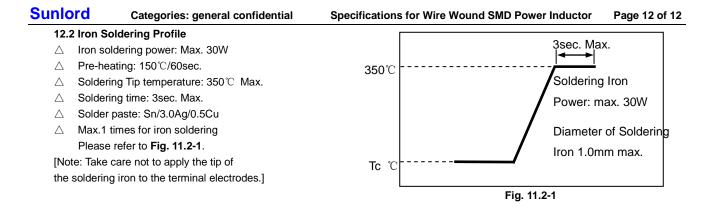

- d). Inspection No.
- e). Inspection stamp
- f). MFG address as 'Made In China'

Fig.9.2.3-1

Categories: general confidential


Categories: general confidential


11 Vi	sual inspection s	tandard of product		
File No: Effectiv		Applied t	o Wire Wound SMD Power Inductor Series	REV:01
No.	No. Defect Item Graphic Rejection identification		Rejection identification	Acceptance
1	Core defect		The defect length/width (I or <i>w</i>) more than L/6 or W/6, NG.	AQL=0.65
2	Core crack		Visual cracks, NG.	AQL=0.65
3	Starvation		 Resin starved length, <i>I</i>, more than L/2, NG. ① IF <i>W</i> > 2mm, resin starved width, <i>w</i>, more than W/2, NG. ② IF <i>W</i>≤2mm, resin starved width, <i>w</i>, don't control. 	AQL=0.65
4	Excessive glue		The length, width or height of product beyond specified value, NG.	AQL=0.65
5	Cold solder		Cold solders <i>I</i> more than 1.0mm, NG.	AQL=0.65
6	Solder icicle	H Af	 The height <i>H</i> of product beyond specified value, NG; The clearance <i>Δf</i> beyond specified value listed in Item 5, NG; 	AQL=0.65
7	Electrode uneven	Δf	The clearance Δf beyond specified value listed in Item 5 , NG;	AQL=0.65

12 Recommended Soldering Technologies 12.1Re-flowing Profile:

- \triangle Preheat condition: 150 ~200°C/60~120sec.
- \triangle Allowed time above 217°C: 60~90sec.
- △ Max temp: 260°C
- \triangle Max time at max temp: 5sec.
- \triangle Solder paste: Sn/3.0Ag/0.5Cu
- \triangle Allowed Reflow time: 2x max
- Please refer to Fig. 11.1-1.

[Note: The reflow profile in the above table is only for qualification and is not meant to specify board assembly profiles. Actual board assembly profiles must be based on the customer's specific board design, solder paste and process, and should not exceed the parameters as the Reflow profile shows.]

13 Precautions

13.1 Surface mounting

- Mounting and soldering condition should be checked beforehand.
- Applicable soldering process to this product is reflow soldering only.
- Recommended conditions for repair by soldering iron:
 - Preheat the circuit board with product to repair at 150° C for about 1 minute. Put soldering iron on the land-pattern.
 - Soldering iron's temperature: 350 °C maximum/Duration: 3 seconds maximum/1 time for each terminal.
 - The soldering iron should not directly touch the inductor.
 - Product once removes from the circuit board may not be used again.

13.2 Handing

- Keep the products away from all magnets and magnetic objects.
- Be careful not to subject the products to excessive mechanical shocks.
- Please avoid applying impact to the products after mounted on pc board.
- Avoid ultrasonic cleaning.

13.3 Storage

- To maintain the solderability of terminal electrodes and to keep the packing material in good condition, temperature and humidity in the storage area should be controlled.
- Recommended conditions: -10°C~40°C, 70%RH (Max.)
- Even under ideal storage conditions, solderability of products electrodes may decrease as time passes. For this reason, product should be used with one year from the time of delivery.
- In case of storage over 6 months, solderability shall be checked before actual usage.

13.4 Regarding Regulations

- Any Class- I or Class- II ozone-depleting substance (ODS) listed in the Clean Air Act in US for regulation is not included in the products or applied to the products at any stage of whose manufacturing processes.
- Certain brominated flame retardants (PBBs,PBDEs) are not used at all.
- The products of this specification are not subject to the Export Trade Control Order in China or the Export Administration Regulations in US.

13.5 Guarantee

The guaranteed operating conditions of the products are in accordance with the conditions specified in this specification.

• Please note that Sunlord takes no responsibility for any failure and/or abnormality which is caused by use under other than the aforesaid operating conditions.